• Title/Summary/Keyword: Heat Paper

Search Result 5,382, Processing Time 0.034 seconds

Simultaneous Determination of Reference Free-Stream Temperature and Convective Heat Transfer Coefficients (자유흐름 온도와 대류열전달 계수를 동시에 측정할 수 있는 실험 방법에 대한 연구)

  • Jeong, Gi-Ho;Song, Ki-Bum;Kim, Kui-Soon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.12
    • /
    • pp.1707-1714
    • /
    • 2002
  • This paper deals with the development of a new method that can obtain heat transfer coefficient and reference free stream temperature simultaneously, The method is based on transient heat transfer experiments using two narrow-band TLCs. The method is validated through error analysis in terms of the random uncertainties in the measured temperatures. It is found that the errors could be reduced more than 2 times less. The general method described in this paper is applicable to many heat transfer models with unknown free stream temperature.

Bondability of Different Electronic Materials by Micro Heat source (마이크로 열원에 의한 이종전자재료의 접합성)

  • 이철인;서용진;신영의;장의구
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.206-209
    • /
    • 1994
  • This paper has been researched bondability of electronic devices, such as lead frame and thick film of Ag/Pd on an alumina substrate by different heat sources. To obtain the bonds with high quality, it is very important to control both the thermal distribution of the bonds and it stability, because electronics components is consist of different materials. Therefore, this paper clarifies not only heat mechanism of micro parallel gap resistance bonding method and pulse heat tip bonding method but also investigates selection of heat sources with micro-electronic materials for bonding. Finally, it is realzed fluxless bonding process with filler metal such as plating layers.

A Mathematical Model for Pyrolysis Processes During Unforced Smoldering of Cigarette (비흡입시 연소하는 담배의 열분해 작용에 관한 수학적 모델)

  • 이성철
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.17 no.2
    • /
    • pp.160-169
    • /
    • 1995
  • A mathematical model for the pyrolysis processes during unforced smoldering of cigarette was proposed in this study by analyzing the physical model of the smoldering cigarette (including the establishment of burning front between burning zone and pyrolysis zone, and analyzing the involvement of main factors such as pyrolysis of virgin tobacco, evaporation of water, and internal heat transport in the processes). Thermal conduction of cigarette paper and convective and radiative heat transfer at the outer surface were also considered via the thermal resistance law for the competitive heat transfer mechanisms. The governing partial differential equations were solved using an integral method. Model predictions of smoldering speed, or linear burn rate, as well as temperature and density profiles in the pyrolysis zone for different kinds of cigarettes were found to be close to the experimental data in the literature (Muramatsu, 1981). The model provides a relatively fast and efficient way to simulate the pyrolysis processes and offers a practical tool for exploring important parameters for a smoldering cigarette, such as blended tobacco composition, properties of cigarette paper, and heat flux from the burning zone to the pyrolysis zone.

  • PDF

Experimental investigation of enhanced heat and mass transfer toy LiBr/$H_2O$ absorber (LiBr/$H_2O$계 흉수기의 흡수촉진에 관한 실험적 연구)

  • 설원실;권오경;윤정인
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.5
    • /
    • pp.581-588
    • /
    • 1998
  • An experimental study of the absorption process of water vapor into Lithium Bromide solution was performed. For the purpose of development of high performance absorption chiller-heater utilizing Lithium Bromide solution as working fluid, the absorber is the most effective to improve the performance of an absorber because it requires the largest heat transfer area in an absorption chiller-heater system. This paper introduces bare tube and floral tube for the absorber of absorption chiller-heaters. floral tube has higher heat and mass transfer performance than bare tube conventionally used in absorbers and the it is expected to perform high heat and mass transfer. This paper will provide important information on the selection of absorber tubes in commercial absorption chiller -heaters.

  • PDF

Characteristic of Heat and Mass Transfer on Inner Ribbed Notched Fin Tube Absorber (내면가공 핀튜브 흡수기의 열 및 물질전달특성)

  • 설원실;권오경;문춘근;정용옥;윤정인
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.4
    • /
    • pp.478-485
    • /
    • 2000
  • An experimental study of the absorption process of water vapor into lithium bromide solution was performed. For the purpose of development of high performance absorption chiller-heater utilizing Lithium Bromide solution as working fluid, the absorber is the most effective to improve the performance of an absorber because it requires the largest heat transfer area in an absorption chiller-heater system. This paper introduces bare tube and inner ribbed notched fin tube for the absorber of absorption chiller-heaters. Inner ribbed notched fin tube has about 10∼20% higher heat and mass transfer performance than bare tube conventionally used in absorbers and the it is expected to perform high heat and mass transfer. This paper will provide important information on the selection of absorber tubes in commercial absorption chill-heaters.

  • PDF

Virtual Machine Placement Algorithm for Saving Energy and Avoiding Heat Islands in High-Density Cloud Computing Environment (고밀도 클라우드 컴퓨팅 환경에서 에너지 절감 및 열섬 방지를 위한 가상 머신 배치 알고리즘)

  • Choi, JungYul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.10
    • /
    • pp.1233-1235
    • /
    • 2016
  • It is desirable to place virtual machines for minimizing the number of operational servers in order to save energy in high-density cloud computing environment. However, the compacted servers can incur heat islands. This paper firstly finds out the relationship between the server utilization by the virtual machine placement and the energy consumption of servers and heat from servers. Then, this paper proposes a virtual machine placement algorithm to save energy consumed and avoid heat islands.

Object-oriented Development of Computer Code for Inverse Heat Conduction Problem

  • Kim, Sun-Kyoung
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.59-65
    • /
    • 2007
  • This paper suggests a method for developing computer code that can solve inverse heat conduction problem, The concept of the object-oriented development is employed to implement the computer code in an efficient and flexible fashion. The software design is conducted based on the unified modeling language. Furthermore, this paper also explains how to implement the deliverable computer code using the existing software development tools.

Thermal Stress Analysis for the Printed Circuit Board of Electronic Packages (전자장비 회로기판의 열응력해석)

  • Kwon Y. J.;Kim J. A.
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.4
    • /
    • pp.416-424
    • /
    • 2004
  • In this paper, the heat transfer analysis and thermal stress analysis of the PCB(Printed Circuit Board) equipped in electronic Packages are carried out for various may types of chips on the PCB. And two structural PCB models are used in the analyses. The electronic chips on the PCB usually emit heat and this heat generates the thermal stress around the chip. The thermal load due to the heat generation of chips on the PCB may cause the malfunction of the electronic packages such as a monitor. a computer etc. Hence, the PCB should be designed to withstand these thermal loads. In this paper, the heat transfer analysis and thermal stress analysis are executed for the PCB model with pins and the analysis results are compared with the results for the PCB model without pins. The analysis results show that the PCB model without pins is not good for the thermal stress analysis of PCB, even though these two models have similar heat transfer characteristics. The analysis results also show that the highest thermal stress occurs in the pin especially attached to the highest temperature chip, and the PCB constrained to the electronic package on the long side is structurally more stable than other cases. The analyses of the PCB are executed using the finite element analysis code, NISA.

Application of the Leak Before Break(LBB) Concept to a Heat Exchanger in a Nuclear Power Plant

  • Kwon, Jae-Do;Lee, Choon-Yeol;Lee, Yong-Son;Sul, Il-Chan
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.10-20
    • /
    • 2001
  • The leak before break(LBB) concept is difficult to apply to a structure with a thin tube that is immersed in a water environment. A heat exchanger in a nuclear power plant is such a structure. The present paper addresses an application of the LBB concept to a heat exchanger in a nuclear power plant. The minimum leaked coolant amount(approximately 37.9 liters) containing the radioactive material which can activate the radiation detector device installed in near the heat exchanger is assumed. A postulated initial flaw size that can not grow to a critical flaw size within the time period to activate the radiation detector is justified. In this case, the radiation detector can activate the warning signal caused by coolant leakage from initially postulated flaws of the heat exchanger. The nuclear plant can safely shutdown when this occurs. Since the postulated initial flaw size can not grow to the critical flaw size, the structural integrity of the heat exchanger is not impeded. Particularly the informational scenario presented in this paper discusses an actual nuclear plant.

  • PDF

Thermal conductivity of rocks for geothermal energy utilization (지열에너지 활용을 위한 암석의 열전도도 고찰)

  • Lee, Young-Min
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.3 no.2
    • /
    • pp.9-15
    • /
    • 2007
  • Thermal conductivity of rocks is one of the most important parameters in designing a geothermal heat pump system, because heat exchange rate depends primarily on thermal conductivity of rocks. In this paper, the measurement methods of thermal conductivity, thermal conductivity of rocks, and heat exchange rate are discussed.

  • PDF