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This paper suggests a method for developing computer code that can solve inverse heat conduction problem. The
concept of the object-oriented development is employed to implement the computer code in an efficient and flexible
Jashion. The software design is conducted based on the unified modeling language. Furthermore, this paper also
explains how to implement the deliverable computer code using the existing software development tools.

NOMENCLATURE

J = residual

L = Lagrangian

N = number of measurement data

R =regularization term

T, = calculated temperature at i-th sensor location
Y, = measured temperature at i-th sensor location
o = regularization parameter

A= Lgrange multiplier

o, = standard deviation of measured temperature

1. Introduction

Inverse heat conduction problem (IHCP) has been thoroughly
investigated for a variety of configurations.' There are many classes
of IHCPs according to the specification of the corresponding direct
problem. For example, a three-dimensional steady-state THCP® and
two-dimensional transient THCP** have been solved in the previous
studies. Recently, [HCPs in micro- or nano-scale is also studied.® The
scale of the problem is now considered another measure for
classification of IHCP. On the other hand, IHCPs can also be
classified by kinds of the unknowns to be determined. Such
unknowns can be the material property,” boundary conditions' and
geomt::try.g’9

Many different types of THCPs can be encountered while
analyzing the real-world thermal systems.” Implementational issues,
however, are not much studied. This work will suggest a unified
process for implementing the computer software that can solve IHCPs.
This work employs the methods of the object-oriented programming
to realize the computer software in a rapid and reliable fashion.'” This
work provides a framework for developing IHCP computer codes.
This framework makes it possible to build up a new IHCP code
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simply by assembling existing codes since the concept of object-
oriented software development allows easier reusing, safe wrapping
and insured interoperability.

More specifically, the unified modeling language (UML), which
is the standard object modeling language, is utilized in this
development.!™'? The present paper does not explain the
mathematical details of the [HCP>* The readers who are not familiar
with THCP are recommended to read.' This work presents several
UML diagrams and explains them. In the process of realizing those
diagrams, the software design is completed. UML suggests that the
scenario, use case, class and sequence diagrams be included as
essential elements in the design. This work shows and explains those
four elements sequentially. By doing so, what to realize and how to
implement become clear.

2. Delineation of the inverse heat conduction problem

2.1 Scenario

We need to delineate what it is to solve an [HCP. There are many
different solution methods for IHCPs including the sequential
method,' the whole domain method'™ and the space marching
method.? In the sequential and space marching methods, the inverse
estimation and the direct problem are so strongly coupled that it is
very hard to develop a flexible and reusable code.! Flexibility and
reusability are crucial issues in software developments since those
properties allow shortening the development time.'® Although the
sequential method and other methods have many excellent features,
they are not considered in this work for the aforementioned reason.

The scenario here means the abstract description of what happens
inside the THCP software while it runs. There are decisions that
should be made according to the developmental phases. Some of
them are to be decided during the design phase and others during the
implementational phase or run time. Let us describe those details.

Generally, in an inversion process, we reverse the direction of
information flow.” By doing so, the causes are found from the
observations of the results. In a typical IHCP, the boundary condition
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Fig. 1 Use case diagram

of Dirichlet or Neumann type is determined based on the temperature
readings elsewhere. The main issue in this sort of inversion is the
instability of the solution, which is attributed to the mathematical ill-
posedness inherent in the problem.'” To overcome this difficulty,
treating the problem as an optimization problem is widely accepted
and proven reliable.” * This study also employs the optimization-
based approach.

The optimization problem for THCP finds the unknowns of
interest that render a statistical consistency between the calculation
and measurement data. Thus, numerical or analytical calculation
should be conducted to compare the results with the experimental
data. Usually the experimental data in IHCP are temperature readings.
Although thermal strain or heat flux measurements can also be such
data under special situations, this study considers temperature
measurements only.

2.2 Use case

Use cases mean a collection of scenario which can happen during
running the software.!® '' The conventional scenarios of numerical
tools are usually straightforward. There is no fatal risk that can be
incurred by a failure of this kind of software run. Thus in most cases a
simple description can explain the entire scenario successfully. The
use cases for IHCP can be as follows.

Basic flow:

a. The experimenter obtains a set of experimental data.

b. The analyst gathers all the information required for the analysis
including experimental data, statistical criterion, geometry, boundary
condition, material property, sensor locations and information about

unknowns of interest. :

c. The analyst starts the inverse analysis by initiating the
optimization routine.

d. The optimization routine repeatedly calls the direct simulation
routine to calculate deviation between experimental and numerical
data with the provision of test unknowns.

e. The optimization routine eventually finds the unknowns that
satisfy the criteria imposed by the analyst and returns the unknov\Tns
as a final solution set.

Alternative flowl
¢. The input data are inconsistent with each other so that the
analysis cannot start.

Alternative flow2
e. The optimization routine cannot find the unknowns that meet
the imposed criteria.

The use case diagram can explain the above scenario in a vislual
fashion, which is shown in Fig. 1. There is no strict rule in drawing
this diagram. As long as the diagram can reveal what will happen in
the system during run time, any form is good enough. The use case is
an overview of the entire system from the outside of the system! It
clearly explains the requirements of the system. Although it does l
necessarily have to be connected to the classes of the system, it gi\lzes
a conceptual foundation for building the classes.
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As shown in the figure, there are two actors in the diagram, who
are the Experimenter and the Inverse Analyst. The diagram shows
what those actors should fulfill. Here, we assume the experimental
system and the software are under their control. Especially, the
Inverse Analyst’s role is crucial. He or she should initiate the analysis

and check up the integrity of the entire analysis. What should be done

the THCP software. The optimization software seeks the desired
unknown condition that meets the rule of discrepancy between the
simulated and experimental data.
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inside the software is now quite clear. Next step is to build up the

classes to implement the system.

3. Diagrams
3.1 Basic Class Diagram

The classes are central to the objected-oriented modeling. The

classes explain the objects of the system and the static relationship

among them. There are three different views in classes. Each of them
focuses on concept, specification and implementation respectively.
This work basically considers the conceptual class diagram since the
implementational details are not the purpose of this paper .

Three important aspects in solving IHCPs are how to conduct the
optimization, how to simulate the phenomena numerically, and how
to handle the experimental, numerical and user-provided data. The
core of the classes is the optimization class where all the data should

be processed. Thus, the class diagram in Fig. 2 shows the essence of

regularization is handled, the optimization can be either constrained
or unconstrained.

inversion
regularization, the optimization problem should be a constrained one.

The implementation level class diagram should be extended from
the basic diagram shown in Fig. 2. Basically, the optimization class
seeks the unknown condition of interest that meets the discrepancy

rule of IHCP. Consider an IHCP system with N measurement data.
The discrepancy rule is expressed as'

J=2(T;2Y) <N

M

where T, Y and o, are the simulated, measured temperatures and
the standard deviation at the i-th sensor location respectively. Because
seeking a solution that renders J =0 returns an unstable solution,’
the optimization problem usually becomes to find the unknown such
that J~ N . However, this kind of equality is quite hard to satisfy.
Thus, the expression is replaced by an inequality condition like
N —\/ﬁ <J<N +m 12 This discrepancy rule becomes the

feasibility condition of the optimization problem. In most cases, we

have to employ some sort of regularization to obtain sufficiently
smooth and dependable solutions.'* Depending on the way the

Basically, when the
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However, introduction of the regularization parameter relieves the
burden of the constrained optimization. Consider the regularization
term, R, and the Lagrange multiplier, A . In this case, the
optimization problem should minimize R subject to the feasibility
condition. The Lagrangian of the optimization in this case is written
as

L=R+AJ )
In the optimum point, we have VL =VR+ AVJ =0 . Introducing the
regularization parameter, ¢« , which is equal to 1/1 , we have
VJ +aVR =0 . We can convert the expression into a positive definite
one by multiplying VJ' , which turns out

VJ"-(VJ+aVR)=0 )
For a given « , the above expression becomes a nonlinear system of
equations. It should be noted that an engineer should determine o
that satisfies the feasibility condition. The level of smoothing in the
resulted solution varies greatly depending on the selection of the
regularization parameter. Therefore, in a sense, the constrained
optimization is a process that automatically determines the regularizat

ion parameter. However, the computational cost also dramatically
increases in the constrained optimization."” The IHCP sofiware can

run in either way according to the requirement.

3.2 Optimization Class

In order to provide flexibility in the analysis, the computer codes
should be adaptable to various optimization methods. Thus, the
optimization class should be an interface class to realize such
adaptability and utilize many existing optimization codes. We can
wrap any existing optimization code with an interface to make |it
adaptable to the IHCP code. This kind of wrapping is done by
employing the adaptor pattern, which is shown in Fig. 3.1

A class diagram can be presented in various styles. The class
diagram shown in Fig. 3 is not the most general or unique one. It [is
simply a plausible one. This class diagram shows that a variety of
optimization codes can be utilized to implement the optimization
class in the THCP code. The generalization arrow in the diagram |is
realized by inheritance toward the direction reverse to the arrow. Flor
exla(l)mple, in C++ the Levenberg-Marquardt Method can be declared
as

Class LevenbergMarquardtMethod :

public GradientBasedOptimization{ };
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3.3 Whole Class Diagram

The whole class diagram, which neglects the detail around the
optimization class, is shown in Fig. 4. This diagram reveals several
important natures of the IHCP code. The ultimate purpose of any
IHCP code is to determine the unknown of interest. Most of IHCP, as
in this diagram, regards geometry, boundary condition and material
property as unknowns. There are several other unknowns such as heat
source, initial condition and time constant of thermal wave in the
hyperbolic heat equation. These are not considered here. The
unknown condition is necessary for the renewal of the simulated data.
The diagram conceptualizes the polymorphism of the unknown
condition using a typical pattern. The realization of the unknown
condition greatly depends on the type of the unknown. Thus, we need
to unify the access method to the UnknownCondition class. Consider
that the unknown is the boundary condition. The difficulty arises here
is t hat the unknown condition should be treated as known boundary
condition when solving the direct problem.

The conventional way of handling this kind of situation is to allot
related variables to a global array. This negatively impacts the
flexibility and reusability of the code. The UnknownCondition class
should hold the pointer to the data in the BoundaryCondition class
instead of holding the boundary condition data values. The
UnknownCondition class should update the corresponding boundary
condition when it is updated. The BoundaryCondition class does not
have to hold any information whether it has any unknown condition
or not. In this fashion, the UnknownCondition class and classes
directly related to the DirectProblem class are isolated. Three classes
derived from an abstract class, UnknownCondtion, are employed to
resolve the different nature of three different kinds of unknown
conditions. Complete separation of the Geometry, BoundaryConditon
and MaterialProperty classes from the UnknownCondtion derived-
classes allows great flexibility in designing and implementing the
code for the direct problem.

A sample design of the UnknownCondition class is shown in Fig.
5. The class should have some members characterizing the unknown.
The one important thing is the class should involve the metadata that
explains the data itself in the class.

3.4 Sequences and Collaboration Diagrams

The sequence diagram presents the procedures to be done by the
software. Fig. 6 shows the sequences diagram that performs the
described inverse analysis. Understanding the diagram is quite
straightforward. The diagram clarifies the tasks to be done by the
software. The diagram does not have to include every detail of the
procedures that the software should implement. As shown in the
diagram, it reveals the essence of the process that should be done in
an optimization-based IHCP code. The solid arrows mean the actions
and dashed arrows mean the returns.

4:read Input Data
5: get User Input
—d

JEEEAY 6: Optimization
10: Experimental Data

The main routine, IHCPMain, initiates the procedures. Then, the
optimization routine repeatedly calls the direct problem and compares
the simulated data with the experimental data. By doing so, the
optimization routine finds the inverse solution. The idea that was
described in the use case diagram is further concretized in the
sequence diagram. The role of this diagram is to procedurally declare
what is supposed to happen inside the software.

The collaboration diagram is similar to the sequence diagram. It
further clarifies the tasks to be executed. Each operation is numbered
according to the order of execution. As shown in Fig. 7, this diagram
depicts how each class is collaborating with other classes.

3.5 Implementational Issues

Implementation here means realizing the executable computer
software based on the abstraction presented in the diagrams. Recently,
several development tools that are capable of automatically
converting the diagrams into the computer codes are available.'” Even
without such automation tools the diagram greatly helps write codes.
An automation tool or a developer creates a skeleton based on the
diagrams. Then, the developer should fill out the routines in the
skeleton. The developer might be able to utilize many existing codes
in order to complete the routines. For example, the developer can
reuse any existing code that can solve the direct heat conduction
problem. Furthermore, commercial analysis software can be
interlinked to the IHCP software via proper interfaces.

This paper does not present any actual computer codes. Such
realization is result of the process but not the main issue in this paper.
The actual computer code, which is implemented based on the
proposed UML design, would greatly vary depending on the coding
convention, developing tools, situation and other restrictions. Figure 8
shows a screen view of the implemented IHCP software.

4. Application to One-Dimensional IHCP

4.1 Problem Statement

To demonstrate the usefulness of the proposed framework, a
simple one-dimensional IHCP is selected. The domain of interest is a
finite one-dimensional slab with length 1. as illustrated in Fig. 9. The
temperature of the left side f (t) is unknown and the right side is
insulated. Material properties are considered constant over the entire
domain. The measured temperature Y (t) is acquired on the insulated
surface, x=1. The governing equation of this transient conduction
problem with unit thermal diffusivity is given as follows.

T,=T,, T(0.0)= /(). T.(.1)=0, T(0)=0 @
The inverse problem should determine the f (t) from Y (t) .

7: get Simulated Data
e

9: Simulated Data

2: conduct Experiment
and Measurement

Fig. 7 Collaboration diagram
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4.2 Solution Method

Consider Egs. (1) and (2). Here, R is set as Z,’ilf’(ti)2 . The
constrained optimization problem defined by Eq. (2) has been solved.
That is, the objective is to minimize R subject to Eq. (1). The
successive quadratic programming (SQP) in Fig. 3 is selected to solve
this optimization problem since the problem is a nonlinear
constrained problem. An existing SQP named CFSQP has been
reused with a proper interfacing.'® Equation (4) has been solved using
the method of line, which is implemented in an IMSL routine,
MOLCH."

4.3 Results

In this investigation, the standard deviation is set as 0.01 and the
time step is 0.05. Fig. 10 compares the result by the conventional
conjugate gradient method, unconstrained Newton method and the
proposed method. In all methods, the gradients are obtained by
solving the adjoint problem of Eq. (4).>* All necessary Hessians are
numerically evaluated. The result in the figure shows that the
constrained optimization using the SQP gives more resolving power.

Within this framework, many optimization methods, including the
constrained and unconstrained optimizations, can be tested.
Sometimes the regularization using the constrained optimization will
be waste of computational resources especially when the problem is

7)

rather easy (bigger time step) and the guess of the regularizatilon
parameter is not difficuit. We can easily develop an IHCP code using
the existing codes on demand: As described, existing codes a!nd
libraries are reused to realize the IHCP code for this test. A flexible
framework proposed in this work allows easier adoption of many

existing methods and developed computer codes.

5. Conclusion

This paper presents a method to develop a computer code for the
inverse heat conduction problem (JHCP) in an object-oriented fashion.
The development process includes the scenario description, use case,
class and sequence diagrams. Through completing the diagrams the
concept and idea inherent in the original problem become concretized
getting close to an implementational level.

There are meaningful implications in introducing object-oriented
method to numerical tool developers. First, while realizing the Ul
diagrams, the developer becomes aware of every important feature to
be implemented as well as underlying concepts. Second, revising and
reusing the software becomes convenient and efficient.

This study is not simply about developing an IHCP code using the
object-oriented programming technique. This study intends to realize

the following two objectives. First, this work tried to sugges:t a

Y (t)

— 1

Fig. 9 Schematic of the test problem
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Fig. 10 Computational results for the test problem

versatile developmental environment that allows containing a variety
of THCP solution codes in a single framework. Second, we thought
that an THCP computer program should be capable of incorporating
many existing codes, including the commercial CAE packages, as
direct solution tools. To build such a computer program, a flexible as
well as reusable foundation is essential. In this work, we proposed to
use the UML to present and develop this foundation.

The current study has shown how to develop an involving
numerical code that solves IHCP. The considered THCP is solved in
the optimization-based method for the flexibility and generality of the
code. The completed diagrams clearly and systematically explain
what should be done by the IHCP code and how to realize it.

REFERENCES

1. Beck, J. V., Blackwell, B. and St. Clair Jr.,, C. R., “Inverse Heat
Conduction,” Wiley, 1985.

2. Alifanov, M., “Inverse Heat Transfer Problem,” Springer-Verlag,
1994.

3. Kurpisz, K. and Nowak, A. J., “Inverse Thermal Problems,”
Computational Mechanics Publications, 1995.

4. Ouzisik, M. N. and Orlande, H. R. B., “Inverse Heat Transfer:
Fundamentals and Applications,” Taylor & Francis, 2000.

5. Kim, S. K. and Lee, W. 1., “Inverse estimation of steady-state
surface temperature on a three-dimensional body,” International

Journal of Numerical Methods for Heat & Fluid Flow, Vol. 12, No.

8, pp. 1032-1050, 2002.

6. Kim, S. K. and Daniel, 1. M., “Solution to inverse heat conduction
problem in nanoscale using sequential method,” Numerical Heat
Transfer, Part B, Vol. 44, pp. 439-456, 2003.

7. Flach, G P. and Ozisik, M. N.,“Inverse heat conduction problem
of simultaneously estimating spatially varying thermal
conductivity and heat capacity per unit volume,” Numerical Heat
Transfer, Part A, Vol. 16, pp. 249-266, 1989.

8. Hsieh, C. K. and Kassab, A. J., “A general mothod for the solution
of inverse heat conduction problems with partially unkown
geometries,” International Journal of. Heat Mass Transfer, Vol. 29,
No.1, pp. 47-58, 1986.

9. Kim, S. K. and Lee, W. 1, “Implementation of inverse method for
estimating undetermined boundary in a two-dimensional slab

based on temperature measurement,” Numerical Heat Transfer,
Part A, Vol. 46, pp. 515-523, 2004.

10.Coad, P. and Nicola, J., “Object-Oriented Programming,”
Pearson Education, 1993.

11. Folwer, M., “UML Distilled: A Brief Guide to the Standard Object
Modeling Language,” 3™ Ed.,. Addison-Wesley, 2003.

12. Booch, G,, Rumbaugh, J. and Jacobson, 1., “The Unified Modeling
Language User Guide,” 1 Ed., Addison-Wesley, 1998.

13. Arora, J. S., “Introduction to Optimum Design,” McGraw-Hill,
1989.

14. Gamma, E., Helm, R., Johnson, R. and Vlissides, J., “Design
Patterns,” 1% Ed., Addison-Wesley, 1995.

15. Quatrani, T., “Visual Modeling with Rational Rose 2002 and
UML,” Addison-Wesley, 2002.

16. Lawrence, C., Zhou, Z. L. and Tits, A. L., “User’s Guide for
CFSQP Version 2.5,” University of Maryland, 1997.

17. Visual Numerics, “FORTRAN subroutines for mathematical
applications,” Houston, Texas, Visual Numerics, 1994.



