A Mathematical Model for Pyrolysis Processes During Unforced Smoldering of Cigarette

비흡입시 연소하는 담배의 열분해 작용에 관한 수학적 모델

  • 이성철 (한양대학교 화학공학과)
  • Published : 1995.12.01

Abstract

A mathematical model for the pyrolysis processes during unforced smoldering of cigarette was proposed in this study by analyzing the physical model of the smoldering cigarette (including the establishment of burning front between burning zone and pyrolysis zone, and analyzing the involvement of main factors such as pyrolysis of virgin tobacco, evaporation of water, and internal heat transport in the processes). Thermal conduction of cigarette paper and convective and radiative heat transfer at the outer surface were also considered via the thermal resistance law for the competitive heat transfer mechanisms. The governing partial differential equations were solved using an integral method. Model predictions of smoldering speed, or linear burn rate, as well as temperature and density profiles in the pyrolysis zone for different kinds of cigarettes were found to be close to the experimental data in the literature (Muramatsu, 1981). The model provides a relatively fast and efficient way to simulate the pyrolysis processes and offers a practical tool for exploring important parameters for a smoldering cigarette, such as blended tobacco composition, properties of cigarette paper, and heat flux from the burning zone to the pyrolysis zone.

Keywords