• Title/Summary/Keyword: Heat Loss

Search Result 2,089, Processing Time 0.037 seconds

Parametric Study on the Heat Loss of the Reactor Vessel in the Nuclear Power Plant (원자력 발전 원자로 용기의 열손실 설계인자에 관한 연구)

  • Jong-Ho Park;Seoug-Beom Kim
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.5
    • /
    • pp.827-836
    • /
    • 2004
  • The design parameter of the heat loss for the pressurized water reactor has been studied. The heat loss from the reactor vessel through the air gap. insulation are analysed by using the computational fluid dynamics code, FLUENT. Parametric study has been performed on the air gap width between the reactor vessel wall and the inner surface of the insulation, and on the insulation thickness. Also evaluated is the performance degradation due to the chimney effect due to gaps left between the panels during the installation of the insulation system. From the analysis results, the optimal with of air gap and insulation thickness and the value of heat loss are obtained The results show how the heat loss varies with the air gap width and insulation thickness. The temperature and the velocity distributions are also presented. From the results of the evaluation. the optimal air gap width and the optimal insulation thickness are obtained. As the difference between the predicted heat loss and measured heat loss from the reactor vessel is construed Primarily as losses due to chimney effect. the contribution of the chimney effect to the total heat loss is quantitatively indicated.

OPTIMZATION OF A PIN FIN BASED ON THE INCREASING RATE OF HEAT LOSS

  • Kang, Hyung-Suk
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.1
    • /
    • pp.25-32
    • /
    • 2008
  • A pin fin is optimized based on the increasing rate of heat loss by using a two-dimensional analytic method. The optimum heat loss, corresponding optimum thermal resistance and fin length are presented as a function of the fin base thickness, convection characteristic numbers ratio, fin outer radius and ambient convection characteristic number. One of the results shows that both the optimum heat loss and fin length decrease linearly whereas the optimum thermal resistance increases very slightly with increase of the fin base thickness.

  • PDF

Development of Model for Heat Loss from a Micro Combustor Using Pressure Simulation (압력 변화 모사를 통한 초소형 연소기에서의 열손실 예측 모텔 개발)

  • Choi, Kwon-Hyoung;Kwon, Se-Jin;Lee, Dad-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.39-45
    • /
    • 2003
  • As the size of a combustor decreases to a MEMS scale, heat loss increases and becomes a dominant effect on the performance of the devices. Existing models, however, are not adequate to predict the heat transfer and combustion processes in such small scales. In the present study, a semi-empirical model to calculate heat loss from a micro combustor is described. The model derives heat transfer coefficients that best fits the heat loss characteristics of a micro combustor that is represented by transient pressure record after combustion is completed. From conservation of energy equation applied to the burned gas inside the combustor, a relationship between pressure and heat transfer is reduced. Two models for heat transfer coefficients were tested; a constant and first order polynomial of temperature with its coefficients determined from fitting with measurements. The model was tested on a problem of cooling process of burnt gas in a micro combustor and comparison with measurements showed good agreements. The heat transfer coefficients were used for combustion calculation in a micro vessel. The results showed the dependence of flame speed on the scale of the chamber through enhanced heat loss.

Pressure Loss and Heat Transfer Characteristics of Heat Exchanger Using Static Mixing Technology (정적혼합기술 응용 열교환기의 압력손실 및 열전달 특성)

  • Park Sang-Kyoo;Yang Hei-Cheon;Jeon Jun-Chul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.65-72
    • /
    • 2006
  • Heat transfer augmentation in heat exchangers has received much attention in recent years, mainly due to energy efficiency and environmental considerations. Many active and Passive techniques are currently being employed in heat exchangers, with some inserts providing a cost-effective and efficient means of augmenting heat transfer. The Purpose of this paper is to determine the pressure loss and heat transfer characteristics of a heat exchanger using static mixing technology. Experimental measurements were taken on two set-ups: a single tube heat exchanger and a shell-tube heat exchanger with two static mixing inserts. It was concluded that the static mixing inserts resulted in an increase in the pressure loss and heat transfer characteristics as can be expected.

A Study on the Heat Loss Improvement in a Refrigerator Ice Dispenser by Using Reverse Heat Loss Method (역열손실 방법을 이용한 냉장고 얼음 배출구 영역에서의 열손실 개선에 관한 연구)

  • Ha, Ji Soo
    • Journal of Energy Engineering
    • /
    • v.22 no.2
    • /
    • pp.105-111
    • /
    • 2013
  • The present study has been carried out to reduce the heat loss from a built in refrigerator by using reverse heat loss method to discern the region with larger heat loss. To perform this purpose, an infrared thermographic camera has been used to measure the surface temperature of the refrigerator and tried to improve the heat loss near the ice dispenser. The numerical heat transfer analysis also has been accomplished to clarify the heat transfer mechanism near the ice dispenser. The possible applicable method to reduce heat loss was increasing the curvature radius at the ice dispenser corner. The curvature radius has been changed from 0mm to 40mm to see the effect of the curvature at the corner. From the present research, the optimal curvature radius for the reduction of heat loss at the ice dispenser could be 30mm.

Heat Loss Audit and Assessment of the Greenhouses Using Infrared Thermal Image Analysis (적외선 열화상 분석을 통한 온실의 열손실 진단 및 평가)

  • Moon, Jong-Pil;Yun, Nam-Kyu;Lee, Sung-Hyoun;Kim, Hak-Joo;Lee, Su-Jang;Kim, Young-Hwa
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.2
    • /
    • pp.67-73
    • /
    • 2010
  • Unlike Urban building, horticultural facilities has a lot of heat loss through plastic or glass covering material which could be much influential to growing plant and consuming energy for heating greenhouse. In many cases, heat loss from a break of cover, a gap of joint sealing, the entrance to greenhouse and windows for ventilation are the main factors considered in calculating the heating load for horticultural facilities. however the normal observation through human eye and digital camera could not recognize where the heat loss occurred. but the infrared thermal image camera with detecting thermal difference could be very effective for noticing heat loss by analyzing infrared thermal image. In this study, greenhouse structure, covering material, internal and external provisions for Horticultural facilities were surveyed in different sites and Infrared thermal camera shooting and image analysis were performed for auditing heat loss from cultivation facilities The results from this study were that unexpected heat loss had been noticed in 7 representative cases of greenhouse such as side wall covered with single or double plastic, and the joint of horizontal thermal curtain, roof without horizontal thermal curtain, entrance to greenhouse, windows for ventilation. the most important factors for keeping heat energy were whether the horizontal thermal curtain with multifold thermal material was installed or not. The internal or external covering using multifold thermal curtain proved to be the most effective ways to keep heat energy from losing through heat transmission, heat radiation. from inside to outside the horticultural facilities.

Performance Loss & Heat Transfer Characteristics of Synchronous Motors under Various Driving Conditions (구동 조건 변화에 따른 동기 전동기의 성능 손실 및 내부 열전달 특성)

  • Choi, Moon Suk;Um, Sukkee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.165-173
    • /
    • 2013
  • Core loss has a major effect on heat generation in synchronous motors with surface-mounted permanent magnets (SPMs). It is essential to perform heat transfer analysis considering core loss in SPM because core loss is seriously affected by torque and speed of motors. In the present study, mechanical loss, core loss and coil loss are evaluated by measuring input and output energies under various driving conditions. For a better understanding heat transfer paths in synchronous motors, we developed a lumped thermal system analysis model. Subsequently, heat transfer analysis has been performed based on acquired energy loss, temperature data and thermal resistance with three types of SPM. It is shown that the torque constants decrease by Max. 10% as speed increase. At the rated torque, the core loss is Max. 10.9 times greater than the coil loss and the hysteresis loss of magnets is dominant in total loss.

A Heat Loss Comparison Between the Two Parabolic Fin Models Using Two Different Numerical Methods

  • Kim, K.T.;Kang, H.S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.2 no.2
    • /
    • pp.97-109
    • /
    • 1998
  • A comparison of the two dimensional heat loss, computed using the analytical method and the finite difference method in two models(i.e. one is a parabolic fin whose parabolic curves meet at the fin center line and the other is a transformed parabolic fin whose tip cuts vertically), is made assuming the analytical method is correct. For these methods, the root temperature and surrounding convection coefficients of these fins are assumed as constants. The results show that the relative errors of the heat loss between the two methods for the parabolic fin whose tip cuts vertically are smaller than those for the one whose tip does not cut. In case of Bi=0.01, the values of the heat loss obtained using a finite difference method are close to those values obtained using the analytical method for both models. The values of the heat loss from both models calculated by using the analytical method are almost the same for given range of non-dimensional fin length in case of Bi = 0.01 and 0.1.

  • PDF

Optimization of a Pin Fin Based on Fixed Outer Radius (고정된 바깥반경에 기준한 pin 핀의 최적화)

  • Kang, Hyung-Suk;Choi, Soo-Kun
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.3-7
    • /
    • 2008
  • A cylindrical pin fin with variable fin base thickness is optimized based on fixed outer radius by using the one dimensional analytic method. Heat loss from the pin fin with fixed outer radius is presented as a function of the fin length. The ratio of in length for optimum heat loss to that for the maximum heat loss is listed. The maximum heat loss and effectiveness and the fin length for the optimum heat loss are presented as a function of fin base thickness and outer radius. One of the results presents the maximum effectiveness decreases rapidly first and then decreases slowly as the fin outer radius increases.

  • PDF

Pin Fin Optimization Based on the Ratio of Heat Loss to the Maximum Heat Loss (최대 열손실에 대한 열손실 비에 기준한 Pin 핀의 최적화)

  • Kang, Hyung-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.11
    • /
    • pp.817-823
    • /
    • 2008
  • A pin fin with variable fin base thickness is optimized based on the ratio of heat loss to the maximum heat loss using a two-dimensional analytic method. The temperature profile along the normalized radius position in the fin is presented. For fixed fin outer radius, the optimum heat loss, fin length and efficiency as a function of fin base thickness, outer radius, convection characteristic numbers ratio and ambient convection characteristic number are presented. One of the results shows that the effect of fin outer radius and ambient convection characteristic number on the optimum fin length is remarkable.