• Title/Summary/Keyword: Heat Interaction

Search Result 566, Processing Time 0.031 seconds

INFLUENCE OF INVESTMENT/CERAMIC INTERACTION LAYER ON INTERFACIAL TOUGHNESS OF BODY CERAMIC BONDED TO LITHIA-BASED CERAMIC

  • Park, Ju-Mi
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.6
    • /
    • pp.683-689
    • /
    • 2006
  • Statement of problem. Interfacial toughness is important in the mechanical property of layered dental ceramics such as core-veneered all-ceramic dental materials. The interfaces between adjacent layers must be strongly bonded to prevent delamination, however the weak interface makes delamination by the growth of lateral cracks along the interface. Purpose. The purpose of this study was to determine the effect of the reaction layer on the interfacial fracture toughness of the core/veneer structure according to the five different divesting. Materials and methods. Thirty five heat-pressed Lithia-based ceramic core bars (IPS Empress 2), $20mm{\times}3mm{\times}2mm$ were made following the five different surface divesting conditions. G1 was no dissolution or sandblasting of the interaction layer. G2 and G3 were dissolved layer with 0.2% HF in an ultrasonic unit for 15min and 30 min. G4 and G5 were dissolved layer for 15min and 30min and then same sandblasting for 60s each. We veneered bilayered ceramic bars, $20mm{\times}2.8mm{\times}3.8mm$(2mm core and 1.8mm veneer), according to the manufacturer's instruction. After polishing the specimens through $1{\mu}m$ alumina, we induced five cracks for each of five groups within the veneer close to interface under an applied indenter load of 19.6N with a Vickers microhardness indenter. Results. The results from Vickers hardness were the percentage of delamination G1:55%, G2:50%, G3:35%, G4:0% and G5:0%. SEM examination showed that the mean thickness of the reaction layer were G1 $93.5{\pm}20.6{\mu}m$, G2 $69.9{\pm}14.3{\mu}m$, G3 $59.2{\pm}20.2{\mu}m$, G4 $0.61{\pm}1.44{\mu}m$ G5 $0{\pm}0{\mu}m$. The mean interfacial delamination crack lengths were G1 $131{\pm}54.5{\mu}m$, G2 $85.2{\pm}51.3{\mu}m$, and G3 $94.9{\pm}81.8{\mu}m$. One-way ANOVA showed that there was no statistically significant difference in interfacial crack length among G1, G2 and G3(p> 0.05). Conclusion. The investment reaction layer played important role at the interfacial toughness of body ceramic bonded to Lithia-based ceramic.

The Effects of Instructors' Characteristics on the Concept Change of Korean High-School Students. (개념제시자의 특성이 고등학생의 물리 개념 변화에 미치는 영향)

  • Lim, Jung-Soo;Kwon, Jae-Sool
    • Journal of The Korean Association For Science Education
    • /
    • v.16 no.4
    • /
    • pp.340-350
    • /
    • 1996
  • Knowledge is composed through the interaction between the concept structure already held by students and their experience, and learning can be said to be the active process of solving the cognitive conflict caused by this interaction. Therefore, this study consists in showing the effective learning method and finding out the elements which the teacher has to own, through examining several forms of pre-conception or mis-conception of the inertia, the force-equilibrium, the action and reaction, the heat, and the electric current, and then finding out their solution and studying student's change in science concepts. For this study, the types of concept on the five above-mentioned materials which students have were examined through the concept-classifying question paper, and the classes to which the class mode for the change of concepts applied, were practised in each different classroom by each different instructor - a professor, a scientist, a teacher, and two students, respectively. And the effect of the teaching strategy based on these classes, and each different instructor' influence on the change of concept in students. were examined. The result of my study is as follows; 1. Students have various types of pre-conception which are different from science concept, and these types of pre-conception tend to last even after learning in class. 2. The thoughts on the correct science concept of the high school third-grade students who learned the physics in the traditional teaching method, and the second grade students who don't learn the physics yet, were nearly equal those of the second grade students by receiving the physics class through the cognitive conflict course were greatly changed especially that students showed the distinct change on mechanics and electric current. 3. Students didn't show the remarkable change of the science concept on the five materials in the four kinds of experimental classes by each different instructor but in the part of mechanics, there was the distinct change between the class by professor and those by the students. This was due to the difference of the authority and the attitude of the concept demonstrator. 1) The authority, the kind attitude, and the responsibility of the expert played an important role in the correct concept-formation of mechanics part - especially in the case of the mis-conception caused by the intuitive belief. 2) In the class by instructor with the democratic teaching method, the change of concept took place more easily, because in his class students could discuss the subject freely, so that they might experience the thought course to give them the confidence on the science concept.

  • PDF

Deactivation Behavior of K2CO3 Catalyst in the Steam Gasification of Kideco Coal (Kideco 석탄의 스팀 가스화 반응에서 K2CO3 촉매의 비활성화 거동)

  • VICTOR, PAUL;KIM, SOOHYUN;YOO, JIHO;LEE, SIHYUN;RHIM, YOUNGJOON;LIM, JEONGHWAN;KIM, SANGDO;CHUN, DONGHYUK;CHOI, HOKYUNG;RHEE, YOUNGWOO
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.5
    • /
    • pp.517-525
    • /
    • 2016
  • The present work investigates the effect of $K_2CO_3$ catalyst on steam gasification of Kideco coal and the deactivation of the catalyst due to thermal exposure and interaction with coal ash. The gasification reactivity at $700^{\circ}C$ is highly enhanced by $K_2CO_3$, which is not deactivated by the heat treatment at $T{\leq}800^{\circ}C$. TGA and XRD results prove minor decomposition of $K_2CO_3$ after the calcination at $800^{\circ}C$. $K_2CO_3$ is, however, evaporated at the higher temperature. Assuming the conversion of $K_2CO_3$ into $K_2O$ by the decomposition and into $K_2O{\cdot}2.5SiO_2$ and $KAlO_2$ by the interaction with coal ash, the reactivity of the gasification is evaluated in the presence of $K_2O$, $K_2O{\cdot}2.5SiO_2$ and $KAlO_2$. Among them, $K_2O$ is the most active, but much lower in the activity than $K_2CO_3$. XRD results show that $K_2CO_3$ could react readily with the ash above $700^{\circ}C$.

The Interactive Effect of These Bacterial Substrates on the Growth of Streptococcus gordonii, Fusobacterium nucleatum and Porphyromonas gingivalis (Streptococcus gordonii, Fusobacterium nucleatum 및 Porphyromonas gingivalis의 상호작용이 성장에 미치는 영향)

  • Kim, A-Reum;Jeong, Moon-Jin;Ahn, Yong-Soon;Kim, Mi-Na;Kim, Sung-Im;Lim, Do-Seon
    • Journal of dental hygiene science
    • /
    • v.15 no.2
    • /
    • pp.209-219
    • /
    • 2015
  • In order to explore an effect of interaction of Streptococcus gordonii, Fusobacterium nucleatum and Porphyromonas gingivalis that are bacteria relevant to periodontal disease on its growth, the bacteria were incubated in trypticase soy hemin menadione broth at $37^{\circ}C$ $CO_2$ incubator for 7 days through anaerobic jar by single and co-culture with heat treated dead bacteria under anaerobic gas pack. In order to confirm growth level, absorbance was measured and for confirming colony structure and form, it was observed with scanning electron microscope. In order to confirm an effect on pathogenicity of P. gingivalis, real time reverse transcriptase polymerase chain reaction was implemented for expression analysis for rgpA gene that produces HRgpA which is gingipain. As a result, the following conclusion was obtained. Colony formation of S. gordonii and P. gingivalis was increased by other dead bacteria and in case of F. nucleatum, its colony formation was showed an aspect of being increased by dead bacterium of P. gingivalis but decreased by dead bacterium of S. gordonii. Therefore, it is considered that the strains being used for this study would affect interactively through bacterial cell itself as well as their interaction factor at the time of colony formation.

Voronoi Grain-Based Distinct Element Modeling of Thermally Induced Fracture Slip: DECOVALEX-2023 Task G (Benchmark Simulation) (Voronoi 입자기반 개별요소모델을 이용한 암석 균열의 열에 의한 미끄러짐 해석: 국제공동연구 DECOVALEX-2023 Task G(Benchmark simulation))

  • park, Jung-Wook;Park, Chan-Hee;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.593-609
    • /
    • 2021
  • We proposed a numerical method for the thermo-mechanical behavior of rock fracture using a grain-based distinct element model (GBDEM) and simulated thermally induced fracture slip. The present study is the benchmark simulation performed as part of DECOVALEX-2023 Task G, which aims to develop a numerical method to estimate the coupled thermo-hydro-mechanical processes within the crystalline rock fracture network. We represented the rock sample as an assembly of Voronoi grains and calculated the interaction of the grains (blocks) and their interfaces (contacts) using a distinct element code, 3DEC. Based on an equivalent continuum approach, the micro-parameters of grains and contacts were determined to reproduce rock as an elastic material. Then, the behavior of the fracture embedded in the rock was characterized by the contacts with Coulomb shear strength and tensile strength. In the benchmark simulation, we quantitatively examined the effects of the boundary stress and thermal stress due to heat conduction on fracture behavior, focusing on the mechanism of thermally induced fracture slip. The simulation results showed that the developed numerical model reasonably reproduced the thermal expansion and thermal stress increment, the fracture stress and displacement and the effect of boundary condition. We expect the numerical model to be enhanced by continuing collaboration and interaction with other research teams of DECOVALEX-2023 Task G and validated in further study experiments.

Estimation of the net energy requirement for maintenance in broilers

  • Liu, Wei;Lin, Chang Hua;Wu, Zheng Ke;Liu, Guo Hua;Yan, Hai Jie;Yang, Hua Ming;Cai, Hui Yi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.6
    • /
    • pp.849-856
    • /
    • 2017
  • Objective: The net energy requirement for the maintenance ($NE_m$) of broilers was determined using regression models by the indirect calorimetry method (ICM) or the comparative slaughter method (CSM). Methods: A $2{\times}4$ factorial arrangement of treatments including the evaluation method (ICM or CSM) and feed intake (25%, 50%, 75%, or 100% of ad libitum recommended) was employed in this experiment. In the ICM, 96 male Arbor Acres (AA) birds aged d 15 were used with 4 birds per replicate and 6 replicates in each treatment. In the CSM, 116 male AA birds aged d 15 were used. Among these 116 birds, 20 were selected as for initial data and 96 were assigned to 4 treatments with 6 replicate cages and 4 birds each. The linear regression between retained energy (RE) and metabolizable energy intake (MEI) or the logarithmic regression between heat production (HP) and MEI were used to calculate the metabolizable or net energy requirement for maintenance ($ME_m$) or $NE_m$, respectively. Results: The evaluation method did not detect any differences in the metabolizable energy (ME), net energy (NE), and NE:ME of diet, and in the MEI, HP, and RE of broilers. The MEI, HP, and RE of broilers decreased (p<0.01) as the feed intake decreased. No evaluation method${\times}$feed intake interaction was observed on these parameters. The $ME_m$ and $NE_m$ estimated from the linear relationship were 594 and 386 kJ/kg of body weight $(BW)^{0.75}/d$ in the ICM, and 618 and 404 kJ/kg of $BW^{0.75}/d$ in the CSM, respectively. The $ME_m$ and $NE_m$ estimated by logarithmic regression were 607 and 448 kJ/kg of $BW^{0.75}/d$ in the ICM, and were 619 and 462 kJ/kg of $BW^{0.75}/d$ in the CSM, respectively. Conclusion: The NEm values obtained in this study provide references for estimating the NE values of broiler diets.

Regulation of Abiotic Stress Response by Alternative Splicing in Plants (식물에서 선택적 스플라이싱에 의한 스트레스 반응 조절)

  • Seok, Hye-Yeon;Lee, Sun-Young;Moon, Yong-Hwan
    • Journal of Life Science
    • /
    • v.30 no.6
    • /
    • pp.570-579
    • /
    • 2020
  • Pre-mRNA splicing is a crucial step for the expression of information encoded in eukaryotic genomes. Alternative splicing occurs when splice sites are differentially recognized and more than one transcript and potentially multiple proteins are generated from the same pre-mRNA. The decision on which splice sites are selected under particular cellular conditions is determined by the interaction of proteins, globally designated as splicing factors, that guide spliceosomal components, and thereby the spliceosome, to their respective splice sites. Abiotic stresses such as heat, cold, salt, drought, and hypoxia markedly alter alternative splicing patterns in plants, and these splicing events implement changes in gene expression for adaptive responses to adverse environments. Alteration of the expression or activity of splicing factors results in alternative splicing under cold, heat, salt, or drought conditions, and alternatively spliced isoforms respond distinctly in several aspects such as expression in different tissues or degradation via nonsense-mediated decay. Spliced isoforms may vary in their subcellular localization or have different biological functions under stress conditions. Despite numerous studies, functional analyses of alternative splicing have been limited to particular abiotic stresses; the molecular mechanism of alternative splicing in abiotic stress response remains uncovered which suggests that further studies are needed in this area.

Preparation and Characterization of Reduced Graphene Oxide with Carboxyl Groups-Gold Nanorod Nanocomposite with Improved Photothermal Effect (향상된 광열 효과를 갖는 카르복실화된 환원 그래핀옥사이드-골드나노막대 나노복합체의 제조 및 특성 분석)

  • Lee, Seunghwa;Kim, So Yeon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.312-319
    • /
    • 2021
  • Photothermal therapy is a treatment that necrotizes selectively the abnormal cells, in particular cancer cells, which are more vulnerable to heat than normal cells, using the heat generated when irradiating light. In this study, we synthesized a reduced graphene oxide with carboxyl groups (CRGO)-gold nanorod (AuNR) nanocomposite for photothermal treatment. Graphene oxide (GO) was selectively reduced and exfoliated at high temperature to synthesize CRGO, and the length of AuNR was adjusted according to the amount of AgNO3, to synthesize AuNR with a strong absorption peak at 880 nm, as an ideal photothermal agent. It was determined through FT-IR, thermogravimetric and fluorescence analyses that more carboxyl groups were conjugated with CRGO over RGO. In addition, CRGO exhibited excellent stability in aqueous solutions compared to RGO due to the presence of carboxylic acid. The CRGO-AuNR nanocomposites fabricated by electrostatic interaction have an average size of ~317 nm with a narrow size distribution. It was confirmed that under radiation with a near-infrared 880 nm laser which has an excellent tissue transmittance, the photothermal effect of CRGO-AuNR nanocomposites was greater than that of AuNR due to the synergistic effect of the two photothermal agents, CRGO and AuNR. Furthermore, the results of cancer cell toxicity by photothermal effect revealed that CRGO-AuNR nanocomposites showed superb cytotoxic properties. Therefore, the CRGO-AuNR nanocomposites are expected to be applied to the field of anticancer photothermal therapy based on their stable dispersibility and improved photothermal effect.

Color stability of 3D-printed denture resins: effect of aging, mechanical brushing and immersion in staining medium

  • Alfouzan, Afnan Fouzan;Alotiabi, Hadeel Minife;Labban, Nawaf;Al-Otaibi, Hanan Nejer;Taweel, Sara Mohammad Al;AlShehri, Huda Ahmed
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.3
    • /
    • pp.160-171
    • /
    • 2021
  • Purpose. This in-vitro study evaluated and compared the color stability of 3D-printed and conventional heat-polymerized acrylic resins following aging, mechanical brushing, and immersion in staining medium. Materials and methods. Forty disc-shaped specimens (10 mm in diameter and 3 mm thick) were prepared from two 3D-printed [DentaBASE (DB) and Denture 3D+ (D3D)] and one conventional polymethylmethacrylate (PMMA) denture materials. The specimens were thermo-cycled, subjected to mechanical brushing, and were immersed in either coffee, lemon juice, coke, or artificial saliva (AS) to simulate one and two years of oral use. Color measurements of the specimens were recorded by a spectrophotometer at baseline (T0), and after one (T1) and two years (T2) of simulation. The color changes (ΔE) were determined and also quantified according to the National Bureau of Standards (NBS) units. Descriptive statistics, followed by factorial ANOVA and Bonferroni post-hoc test (α=.05), were applied for data analysis. Results. The independent factors, namely material, staining medium, and immersion time, and interaction among these factors significantly influenced ΔE (P<.009). Irrespective of the materials, treatments, and time, the highest and the lowest mean ΔEs were observed for PMMA in lemon juice (4.58 ± 1.30) and DB in AS (0.41 ± 0.18), respectively. Regarding the material type, PMMA demonstrated the highest mean ΔE (2.31 ± 1.37), followed by D3D (1.67 ± 0.66), and DB (0.85 ± 0.52), and the difference in ΔE between the materials were statistically significant (P<.001). All the specimens demonstrated a decreased color changes at T2 compared to T1, and this difference in mean ΔE was statistically significant (P<.001). Conclusion. The color changes of 3D-printed denture resins were low compared to conventional heat polymerized PMMA. All the tested materials, irrespective of the staining medium used, demonstrated a significant decrease in ΔE values over time.

Grain-Based Distinct Element Modeling of Thermoshearing of Rock Fracture: DECOVALEX-2023 Task G (입자기반 개별요소모델을 이용한 암석 균열의 Thermoshearing 거동 해석: 국제공동연구 DECOVALEX-2023 Task G)

  • Jung-Wook, Park;Li, Zhuang;Jeong Seok, Yoon;Chan-Hee, Park;Changlun, Sun;Changsoo, Lee
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.568-585
    • /
    • 2022
  • In the present study, we proposed a numerical method for simulating thermally induced fracture slip using a grain-based distinct element model (GBDEM). As a part of DECOVALEX-2023, the thermo-mechanical loading test on a saw-cut rock fracture conducted at the Korea Institute of Civil Engineering and Building Technology was simulated. In the numerical model, the rock sample including a saw-cut fracture was represented as a group of random Voronoi polyhedra. Then, the coupled thermo-mechanical behavior of grains and their interfaces was calculated using 3DEC. The key concerns focused on the temperature evolution, thermally induced principal stress increment, and fracture normal and shear displacements under thermo-mechanical loading. The comparisons between laboratory experimental results and the numerical results revealed that the numerical model reasonably captured the heat transfer and heat loss characteristics of the rock specimen, the horizontal stress increment due to constrained displacement, and the progressive shear failure of the fracture. However, the onset of the fracture slip and the magnitudes of stress increment and fracture displacement showed discrepancies between the numerical and experimental results. We expect the numerical model to be enhanced by continuing collaboration and interaction with other research teams of DECOVALEX-2023 Task G and validated in further study.