Browse > Article
http://dx.doi.org/10.7474/TUS.2021.31.6.593

Voronoi Grain-Based Distinct Element Modeling of Thermally Induced Fracture Slip: DECOVALEX-2023 Task G (Benchmark Simulation)  

park, Jung-Wook (Korea Institute of Geoscience and Mineral Resources)
Park, Chan-Hee (Korea Institute of Geoscience and Mineral Resources)
Lee, Changsoo (Korea Atomic Energy Institute)
Publication Information
Tunnel and Underground Space / v.31, no.6, 2021 , pp. 593-609 More about this Journal
Abstract
We proposed a numerical method for the thermo-mechanical behavior of rock fracture using a grain-based distinct element model (GBDEM) and simulated thermally induced fracture slip. The present study is the benchmark simulation performed as part of DECOVALEX-2023 Task G, which aims to develop a numerical method to estimate the coupled thermo-hydro-mechanical processes within the crystalline rock fracture network. We represented the rock sample as an assembly of Voronoi grains and calculated the interaction of the grains (blocks) and their interfaces (contacts) using a distinct element code, 3DEC. Based on an equivalent continuum approach, the micro-parameters of grains and contacts were determined to reproduce rock as an elastic material. Then, the behavior of the fracture embedded in the rock was characterized by the contacts with Coulomb shear strength and tensile strength. In the benchmark simulation, we quantitatively examined the effects of the boundary stress and thermal stress due to heat conduction on fracture behavior, focusing on the mechanism of thermally induced fracture slip. The simulation results showed that the developed numerical model reasonably reproduced the thermal expansion and thermal stress increment, the fracture stress and displacement and the effect of boundary condition. We expect the numerical model to be enhanced by continuing collaboration and interaction with other research teams of DECOVALEX-2023 Task G and validated in further study experiments.
Keywords
Thermally Induced Fracture Slip; DECOVALEX-2023; Grain-Based Distinct Element Model; Voronoi Diagram; 3DEC;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lee, J., Cho, D., Choi, H., and Choi, J., 2007, Concept of a Korean reference disposal system for spent fuels. Journal of Nuclear Science and Technology, 44(12), 1565-1573.   DOI
2 Park, J.W., Park, C., Song, J. W., Park, E. S., and Song, J. J., 2017, Polygonal grain-based distinct element modeling for mechanical behavior of brittle rock. International Journal for Numerical and Analytical Methods in Geomechanics 41(6), 880-898.   DOI
3 Park, J.W., Park, C.H., Lee, C., 2021. Hydro-Mechanical Modeling of Fracture Opening and Slip using Grain-Based Distinct Element Model: DECOVALEX-2023 Task G (Benchmark Simulation). Tunnel and Underground Space, 31(4), 270-288.   DOI
4 Park, J.W., Park, C.H., Yoon, J.S., and Lee, C., 2020, Grain-Based Distinct Element Modelling of the Mechanical Behavior of a Single Fracture Embedded in Rock: DECOVALEX-2023 Task G (Benchmark Simulation). Tunnel and Underground Space, 30(6), 573-590.   DOI
5 Sun, C., Zhuang, L., Jung, S., Lee, J., and Yoon, J.S., 2021, Thermally induced slip of a single sawcut granite fracture under biaxial loading. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 7(4), 1-13.   DOI
6 Quey, R., Dawson, P.R., and Barbe, F., 2011, Large-scale 3D random polycrystals for the finite element method: Generation, meshing and remeshing. Computer Methods in Applied Mechanics and Engineering, 200(17-20), 1729-1745.   DOI
7 Wang, Z., Wang, T., Wu, S., and Hao, Y., 2021, Investigation of microcracking behaviors in brittle rock using polygonal grain-based distinct method. International Journal for Numerical and Analytical Methods in Geomechanics.
8 Itasca Consulting Group Inc., 2021. 3DEC (3 Dimensional Distinct Element Code) online manual. Available at https://www.itascacg.com/software/3DEC
9 Zoback, M.D. and Gorelick, S.M., 2012, Earthquake triggering and large-scale geologic storage of carbon dioxide, Proceedings of the National Academy of Sciences of the United States of America 109(26), 10164-10168.   DOI
10 Kim, T., Lee, C., Kim, J.W., Kang, S., Kwon, S., Kim, K.I., Park, J.W., Park, C.H., and Kim, J.S., 2021, Introduction to Tasks in the International Cooperation Project, DECOVALEX-2023 for the Simulation of Coupled Thermohydro-mechanical-chemical Behavior in a Deep Geological Disposal of High-level Radioactive Waste. Tunnel and Underground Space, 31(3), 167-183.   DOI
11 Jaeger, J.C., Cook, N.G.W., and Zimmerman, R.W., 2007, Fundamentals in Rock Mechanics. fourth ed. Oxford: Blackwell publishing.
12 Lee, C., Lee, J., Park, S., Kwon, S., Cho, W.J., and Kim, G.Y., 2020, Numerical analysis of coupled thermo-hydro-mechanical behavior in single-and multi-layer repository concepts for high-level radioactive waste disposal. Tunnelling and Underground Space Technology, 103, 103452.   DOI
13 Fu, T.F., Xu, T., Heap, M.J., Meredith, P.G., and Mitchell, T.M., 2020, Mesoscopic time-dependent behavior of rocks based on three-dimensional discrete element grain-based model. Computers and Geotechnics 121, 103472.   DOI
14 Geuzaine, C. and Remacle, J. F., 2009, Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities. International journal for numerical methods in engineering 79(11), 1309-1331.   DOI
15 Ghazvinian, E., Diederichs, M.S., and Quey, R., 2014, 3D random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing. Journal of Rock Mechanics and Geotechnical Engineering 6(6), 506-521.   DOI
16 Birkholzer, J.T., Tsang, C.F., Bond, A.E., Hudson, J.A., Jing, L., and Stephansson, O., 2019, 25 years of DECOVALEX-Scientific advances and lessons learned from an international research collaboration in coupled subsurface processes. International Journal of Rock Mechanics and Mining Sciences 122, 103995.   DOI
17 Lan, H.X., Martin, C.D., and Hu, B., 2010, Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading. Journal of Geophysical Research: Solid Earth 115, B1.
18 IAEA, 2011, Geological disposal facilities for radioactive waste. Specific safety guide No. SSG-14, IAEA, Vienna, Austria.