• Title/Summary/Keyword: Heat Equation

Search Result 1,390, Processing Time 0.027 seconds

An Analytical Study on a Heat Transfer Mechanism with Boiling Effect between Two Fluids in a Mini-channel (미세채널내 증발을 고려한 두 유체간 열전달현상에 대한 해석적인 연구)

  • Yoo, YoungJoon;Choi, Sangmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.114-121
    • /
    • 2013
  • In order to estimate the efficiency of an evaporative heat exchanger having mini channel, the equations to calculate heat exchanger properties, those are air temperatures and water temperatures etc, are derived from the governing equations based on the Navier-Stokes equation, even though there are several assumptions to make problem simplify. There are three heat transfer zones at the mini channel heat exchanger depending on the water condition. So, there are three governing equations and solutions to calculate the properties. As the results of this study, the equations to calculate a saturation point and a dry point are derived to evaluate an evaporative heat exchanger having micro channel. It is supposed to predict and evaluate the performance of a mini channel heat exchanger with evaporation of liquid.

STABILITY OF FUNCTIONAL EQUATIONS WITH RESPECT TO BOUNDED DISTRIBUTIONS

  • Chung, Jae-Young
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.21 no.3
    • /
    • pp.361-370
    • /
    • 2008
  • We consider the Hyers-Ulam type stability of the Cauchy, Jensen, Pexider, Pexider-Jensen differences: $$(0.1){\hspace{55}}C(u):=u{\circ}A-u{\circ}P_1-u{\circ}P_2,\\(0.2){\hspace{55}}J(u):=2u{\circ}\frac{A}{2}-u{\circ}P_1-u{\circ}P_2,\\(0.3){\hspace{18}}P(u,v,w):=u{\circ}A-v{\circ}P_1-w{\circ}P_2,\\(0.4)\;JP(u,v,w):=2u{\circ}\frac{A}{2}-v{\circ}P_1-w{\circ}P_2$$, with respect to bounded distributions.

  • PDF

HYERS-ULAM-RASSIAS STABILITY OF QUADRATIC FUNCTIONAL EQUATION IN THE SPACE OF SCHWARTZ TEMPERED DISTRIBUTIONS

  • CHUNG JAEYOUNG
    • The Pure and Applied Mathematics
    • /
    • v.12 no.2 s.28
    • /
    • pp.133-142
    • /
    • 2005
  • Generalizing the Cauchy-Rassias inequality in [Th. M. Rassias: On the stability of the linear mapping in Banach spaces. Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300.] we consider a stability problem of quadratic functional equation in the spaces of generalized functions such as the Schwartz tempered distributions and Sato hyperfunctions.

  • PDF

Temperature Variations in the Natural Gas Pipeline with the Joule-Thomson Effect (Joule-Thomson 효과를 고려한 천연가스 배관내의 온도 변화)

  • Kim Youn J.
    • 한국가스학회:학술대회논문집
    • /
    • 1997.09a
    • /
    • pp.14-19
    • /
    • 1997
  • A numerical method for determining the temperature vartiation in a natural gas transmission line is presented. By considering an element of the gas pipeline and assuming radially lumped heat transfer at steady-state conditions, the energy equation is developed. The integration of the developed nonlinear differential equation is done numerically using the fourth order Runge-Kutta scheme. The results of the present study have been compared with the results of Coulter equations, and show a fairly good agreement.

  • PDF

Numerical optimization studies of a fire fighting robot cooling system (소방로봇 냉각시스템의 최적화를 위한 수치해석)

  • Lim, Joong-Yeon;Yu, Myoung-Youl;Kim, Jong-Kwon;Lee, Hyun-Geun;Kim, Jun-Seok
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.690-694
    • /
    • 2008
  • In this presentation, we study numerically an optimization problem of a fire fighting robot cooling system. The governing equation for the system is the unsteady heat equation with source term. We use a multigrid method for numerical solutions in three-dimensional space. We investigated the effects of various parameters and the results will be presented.

  • PDF

A Three-Dimensional Galerkin-FEM Model with Density Variation (밀도 변화를 포함하는 3차원 연직함수 전개모형)

  • 이호진;정경태;소재귀;강관수;정종율
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.8 no.2
    • /
    • pp.123-136
    • /
    • 1996
  • A three-dimensional Galerkin-FEM model which can handle the temporal and spatial variation of density is presented. The hydrostatic approximation is used and density effects are included by means of conservation equation of heat and the equation of state. The finite difference grids are used in the horizontal plane and a set of linear-shape functions is used for the vertical expansion. The similarity transform is introduced to solve resultant matrix equations. The proposed model was first applied to the density-driven circulation in an idealized basin in the presence of the heat exchange between the air and the sea. The advection terms in the momentum equation were ignored, while the convection terms were retained in the heat equation. Coefficients of the vertical eddy viscosity and diffusivity were fixed to be constant. Calculation in a non-rotating idealized basin shows that the difference in heat capacity with depth gives rise to the horizontal gradient of temperature. Consequently, there is a steady new in the upper layer in the direction of increasing depth with compensatory counter flow .in the lower layer. With Coriolis force, geostrophic flow was predominant due to the balance between the pressure gradient and the Coriolis force. As a test in region of irregular topography, the model is applied to the Yellow Sea. Although the resultant flow was very complex, the character of the flow Showed to be geostrophic on the whole.

  • PDF

Numerical Modeling of Regenerative Rotary Heat Exchanger: A Review

  • Baruah, Netramoni;Prasanna, Kumar G.V.
    • Journal of Biosystems Engineering
    • /
    • v.42 no.1
    • /
    • pp.44-55
    • /
    • 2017
  • Background: Heat recovery is one of the prominent ways to save a considerable amount of conventional fossil fuel and minimize its adverse effects on the environment. The rotary heat exchanger is one of the most effective and efficient devices for heat recovery or heat exchanging purposes. It is a regenerative type of heat exchanger, which has been studied and used for many heat recovery purposes. However, regenerative thermal wheels have been mostly used as heat recovery systems in buildings. For modeling a rotary regenerator, it is very important to numerically consider all the factors involved, such as effectiveness, rotational speed, geometrical size and shape, and pressure drop (${\Delta}p$). In recent times, several researchers have actively studied the rotary heat exchangers, both theoretically and experimentally. Reviews: In this paper different advances in the numerical modeling of regenerative rotary heat exchangers in relation to fluid flow and heat transfer have been discussed. Researchers have indicated that the effectiveness of the regenerative rotary heat exchanger depends on various factors including, among many others, rotational speed, rotational period and combustion power. It is reported that with the increase of periodic rotation the deviation of theoretical results from the experimental result increases. The available literature indicates that regenerative heat exchangers are having relatively more effectiveness (60-80%), compared to other heat exchangers. It is also observed that the finite difference method and finite volume methods are mostly used for discretizing the heat transfer governing equations, under some assumptions. Research also indicates that for the effectiveness calculation the ${\varepsilon}-NTU$ method is the most popular and convenient.

Stability Against Heat Pulse for Bi-2223 HTS Pancake Coils with Different Ag/SC Ratio (은비가 다른 Bi-2223 고온초전도 팬케이크 코일의 히트펄스에 대하 안정성)

  • 장현만;오상수;하홍수;하동우;류강식;김상현
    • Progress in Superconductivity and Cryogenics
    • /
    • v.1 no.2
    • /
    • pp.43-48
    • /
    • 1999
  • The normal zone propagation (NZP) velocity and V-I characteristics of two Bi-2223 pancake coils with different Ag/SC ratio were investigated based on the experimental results and broad resistive transition were obesved in two coils. The measured NZP velocity of coil was found to be faster due to increase of Ag/SC ratio, and agree well with calculated data from two dimensional heat balance equation.

  • PDF

On the distribution of temperature and metallic structures in quenching process considering latent heat of phase transformation (변태잠열을 고려한 담금시편의 온도 및 조직분포에 대하여)

  • 민수홍;구본권
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.6 no.4
    • /
    • pp.46-53
    • /
    • 1984
  • The analysis of temperature distribution and change of metallic structures during water quench were presented by finite element method. In temperature calculation the equation of unsteady state hear conduction problem considering latent heat due to phase transformation was applied to finite solid cylinder, SM 45C of 40mm diameter and 40mm height. In metallic structure analysis iso-thermal transformation curve and the equations of evolution in pearlite-martensite transformation were applied. The calculated results upon temperature and metallic structures were agreed with those of experimental observations.

  • PDF