• Title/Summary/Keyword: Heat Dissipation

Search Result 515, Processing Time 0.03 seconds

Effect of compression ratio on the heat dissipation of engine (압축비가 기관의 방열에 미치는 영향)

  • 이창식
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.5 no.1
    • /
    • pp.89-93
    • /
    • 1983
  • This paper describes on experimental investigation into the heat dissipation of Diesel engine, placing emphasis on the variations of compression ratio and cooling water temperature. The engine used for this test was a vertical single-cylinder four-cycle type, having a direct injection. Engine performance and heat transfer rates was tested under the compression ratio 14.3 and 17.4. In this study, the results showed that output and transfer rates of engine decrease in accordance with the decrease of compression ratio. The effect of cooling water temperature and injection delay of fuel on the heat dissipation brings about the decrease of heat transfer rates from cylinder to cooling water.

  • PDF

Water Cooling Pipe Structure for Heat-Dissipation of HEV Inverter System (HEV용 인버터의 방열을 위한 수냉식 배관구조)

  • Kim, Gyoung-Man;Woo, Byung-Guk;Lee, Yong-Hwa;Kang, Chan-Ho;Chun, Tae-Won;Cho, Kwan-Yuhl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.27-34
    • /
    • 2010
  • To dissipate the heat generated from the switching devices in the inverter system of HEV, the water cooling structure is proposed. The bolt type cooling structure has a problem such as water leakage for high pressure of water, therefore the proposed cooling structure applied pipe structure in the heat sink. The heat dissipation characteristics for various structures of water channel and distance between heat source and water channel was analyzed through the simulation. heat dissipation effect for two types of water cooling structures was investigated. Based on the simulation results, two types of water cooling system for 30kW inverter system of HEV were manufactured and the heat dissipation effect was verified.

A study on PCB Heat Dissipation Characteristics of High Density Power Supply for E-mobility (E-mobility용 고밀도 전원장치의 PCB방열 특성해석에 관한 연구)

  • Kim, Jong-Hae
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.528-533
    • /
    • 2021
  • This paper presents the PCB heat dissipation characteristics of high density DC-DC converter for electric vehicles. This paper also analyzes the heat dissipation structure of the high density DC-DC converter and optimizes the PCB heat dissipation design of the high density power system through thermal analysis simulation. Based on heat transfer theory, the thermal path of general electronic devices is analyzed and the thermal resistance equivalent circuit is modeled in this paper. Additionally, the thermal resistance equivalent circuit of the 500W synchronous buck converter, which is addressed in this paper, is modeled to present a structural heat dissipation path for better thermal performance. The validity of the proposed scheme is verified through the thermal analysis simulation results and experiments applying multi-surface heat dissipation structure to a 500[W](12[V], 41.67[A]) synchronous buck converter prototype with an input voltage 72[V].

A SATELLITE ELECTRONIC EQUIPMENT THERMAL ANALYSIS USING SEMI-EMPERICAL HEAT DISSIPATION METHOD (반실험적 열소산 방법을 이용한 위성용 전장품 열해석)

  • Kim Jung-Hoon;Jun Hyung-Yoll;Yang Koon-Ho
    • Journal of computational fluids engineering
    • /
    • v.11 no.2 s.33
    • /
    • pp.32-39
    • /
    • 2006
  • A heat dissipation modeling method of EEE parts is developed for thermal design and analysis of an satellite electronic equipment. The power consumption measurement value of each functional breadboard is used for the heat dissipation modeling method. For the purpose of conduction heat transfer modeling of EEE parts, surface heat model using very thin ignorable thermal plates is considered instead of conventional lumped capacity nodes. These modeling methods are applied to the thermal design and analysis of CTU EM and EQM and verified by thermal cycling and vacuum tests.

A Study on Optimized Thermal Analysis Modeling for Thermal Design Verification of a Geostationary Satellite Electronic Equipment (정지궤도위성 전장품의 열설계 검증을 위한 최적 열해석 모델링 연구)

  • Jun Hyoung Yoll;Yang Koon-Ho;Kim Jung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.4 s.235
    • /
    • pp.526-536
    • /
    • 2005
  • A heat dissipation modeling method of EEE parts, or semi-empirical heat dissipation method, is developed for thermal design and analysis an electronic equipment of geostationary satellite. The power consumption measurement value of each functional breadboard is used for the heat dissipation modeling method. For the purpose of conduction heat transfer modeling of EEE parts, surface heat model using very thin ignorable thermal plates is developed instead of conventional lumped capacity nodes. The thermal plates are projected to the printed circuit board and can be modeled and modified easily by numerically preprocessing programs according to design changes. These modeling methods are applied to the thermal design and analysis of CTU (Command and Telemetry Unit) and verified by thermal cycling and vacuum tests.

Analysis of Forced Convection Heat Transfer for Axial Annular Flow of Giesekus Viscoelastic Fluid

  • Mohseni, Mehdi Moayed;Rashidi, Fariborz;Movagar, Mohammad Reza Khorsand
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.91-102
    • /
    • 2015
  • Analytical solutions for the forced convection heat transfer of viscoelastic fluids obeying the Giesekus model are obtained in a concentric annulus under laminar flow for both thermal and hydrodynamic fully developed conditions. Boundary conditions are assumed to be (a) constant fluxes at the walls and (b) constant temperature at the walls. Temperature profiles and Nusselt numbers are derived from dimensionless energy equation. Subsequently, effects of elasticity, mobility parameter and viscous dissipation are discussed. Results show that by increasing elasticity, Nusselt number increases. However, this trend is reversed for constant wall temperature when viscous dissipation is weak. By increasing viscous dissipation, the Nusselt number decreases for the constant flux and increases for the constant wall temperature. For the wall cooling case, when the viscous dissipation exceeds a critical value, the generated heat overcomes the heat which is removed at the walls, and fluid heats up longitudinally.

Comparative Analysis of Thermal Dissipation Properties to Heat Sink of Thermal Conductive Polymer and Aluminum Material (열전도성 고분자와 Al재질의 Heat Sink 방열 성능 비교 분석)

  • Choi, Doo-Ho;Choi, Won-Ho;Jo, Ju-Ung;Park, Dae-Hee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.2
    • /
    • pp.137-141
    • /
    • 2015
  • The purpose of this study is examining thermal dissipation materials for the lighting and radiate efficiency improvement of 8W LED and confirming the properness of the thermal dissipation materials for LED heat sink. Solid Works flow simulation on 8W class COB was done based on the material characteristics of thermal conductive polymer materials. According to the result of simulation, Al had better thermal dissipation performance than PET. Highest temperature was $7.6^{\circ}C$ higher while lowest temperature was $7.8^{\circ}C$ lower. The test on the heat sinks made by the materials, highest temperature was $4.1^{\circ}C$ higher and lowest temperature was $3.9^{\circ}C$ lower. It is possible to confirm that Al heat sink has better thermal dissipation efficiency because it has better dispersion of heat generated at junction temperature and less heat cohesion. The weight of PET heat sink was reduced than Al heat sink by 46.9% by the density difference between Al and PET. In conclusion, thermal dissipation performance of thermal conductive polymer is lower than Al material however, it is possible to lighting heat sink because thermal conductive polymer has better formability, has lower specific weight and enables various design options.

A Study on the Hydraulic and Heat Transfer Characteristics for the Wire-woven Bulk Kagome(WBK) Composed of Aluminum Helix Wires (알루미늄 나선형 와이어로 직조된 다층 Kagome truss PCM의 유동 및 열전달 특성에 관한 연구)

  • Joo, Jai-Hwang;Kang, Bo-Seon;Kang, Ki-Ju
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2061-2066
    • /
    • 2007
  • Recently, ultra-lightweight materials with open, periodic cell structures take much attention owing to its potential for multi-functionality such as load bearing, thermal dissipation, and actuation. This paper presents experimental results on the hydraulic and heat transfer characteristics for the Wire-woven Bulk Kagome(WBK) composed of aluminum 1100 wires. The overall pressure drop and heat transfer of the WBK specimen have been experimentally investigated under forced air convection condition. The pressure loss and heat transfer performance of the aluminum WBK are compared with other heat dissipation media. It was shown that heat transfer depended on relative density and surface area density. Comparison with metal foams and other heat dissipation media such as packed beds, lattice frame materials, louvered fins, and other materials suggests that the aluminum WBK competes favorably with the best available heat dissipation media in heat transfer performance.

  • PDF

Suggestion and Design of GaN on Diamond Structure for an Ideal Heat Dissipation Effect and Evaluation of Heat Transfer Simulation as Different Adhesion Layer (이상적인 열방산 효과를 위한 GaN on Diamond 구조의 제안과 접합매개층 종류에 따른 열전달 시뮬레이션 비교)

  • Kim, Jong Cheol;Kim, Chan Il;Yang, Seung Han
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.5
    • /
    • pp.270-275
    • /
    • 2017
  • Current progress in the development of semiconductor technology in applications involving high electron mobility transistors (HEMT) and power devices is hindered by the lack of adequate ways todissipate heat generated during device operation. Concurrently, electronic devices that use gallium nitride (GaN) substrates do not perform well, because of the poor heat dissipation of the substrate. Suggested alternatives for overcoming these limitations include integration of high thermal conductivity material like diamond near the active device areas. This study will address a critical development in the art of GaN on diamond (GOD) structure by designing for ideal heat dissipation, in order to create apathway with the least thermal resistance and to improve the overall ease of integrating diamond heat spreaders into future electronic devices. This research has been carried out by means of heat transfer simulation, which has been successfully demonstrated by a finite-element method.

A Study on the Fluid Flow and Heat Transfer Characteristics for the Wire-woven Bulk Kagome(WBK) Composed of Aluminum Helix Wires (알루미늄 나선형 와이어로 직조된 다층 Kagome Truss PCM의 유동 및 열전달 특성에 관한 연구)

  • Joo, Jai-Hwang;Kang, Bo-Seon;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.1
    • /
    • pp.15-22
    • /
    • 2008
  • Recently, ultra-lightweight materials with open, periodic cell structures take much attention owing to its potential for multi-functionality such as load bearing, thermal dissipation, and actuation. This paper presents experimental results on the fluid flow and heat transfer characteristics for the Wire-woven Bulk Kagome (WBK) composed of aluminum 1100 wires. The overall pressure drop and heat transfer of the WBK specimen was experimentally investigated under forced air convection condition. The pressure loss and heat transfer performance of the aluminum WBK were compared with other heat dissipation media. It was shown that heat transfer characteristics depended on relative density and surface area density. Comparison with metal foams and other heat dissipation media such as packed beds, lattice frame materials, louvered fins, and others suggests that the aluminum WBK competes favorably with the best available heat dissipation media in heat transfer performance.