• 제목/요약/키워드: Heat & Cooling Energy

검색결과 1,278건 처리시간 0.027초

PCCS Analysis Model for the Passively Cooled Steel Containment

  • Hwang, Y.D.;Chung, B.D.;Cho, B.H.;Chang, M.H.;Jeong, Ik
    • Nuclear Engineering and Technology
    • /
    • 제30권1호
    • /
    • pp.26-39
    • /
    • 1998
  • The containment pressure and temperature transient analysis computer code CONTEMPT4/MOD5 is modified to incorporate the passive containment cooling models. The correlations are selected from the existing experimental heat transfer correlations to model the natural and mixed convection in annular space between the containment shell and the shield building. The evaporative heat transfer of the water film on the outer shell of the containment is modeled using the correlations derived from the analogy between the heat and mass transfer. The modified code is applied to the Ap600 containment transient analysis for the model verification and the results are compared to the results of GOTHIC calculation done by Westinghouse. Also, d series of parametric sensitivity studies of heat transfer correlations, water film ratio and delay time of the wet cooling on the containment peak pressure and temperature following LOCA are performed for the containment of 1000MWe passive plant, KP1000.

  • PDF

흡습 냉각 패드에서의 열 및 물질전달에 관한 연구 (Theoretical Analysis on the Heat and Mass Transfer in a Sorption Cool Pad)

  • 황용신;이대영;박봉철
    • 설비공학논문집
    • /
    • 제16권2호
    • /
    • pp.167-174
    • /
    • 2004
  • A sorption cool pad brings cooling effect without any pre-cooling, nor any external energy supply. It uses evaporative cooling effect stimulated by the desiccative sorption. In this paper, heat and mass transfer in the sorption cool pad are investigated theoretically. The evaporative cooling process caused by the desiccant is modeled and analyzed considering the sorption characteristics of the desiccant. Two nondimensional parameters are found to dominate the cooling process: one is related to the psychrometric characteristics and the other is to the sorption capacity of the desiccant. The former decides the time to reach the lowest temperature and the later controls the time duration of the cooling effect being sustained.

HILS 기반의 수중체 냉각 시스템 개선 (Improvement of Submarine Cooling System using HILS Simulation)

  • 정성영;오진석
    • 대한조선학회논문집
    • /
    • 제49권5호
    • /
    • pp.376-383
    • /
    • 2012
  • Owing to rapid development of power device and inverters, most of submarines adopt an eletric propulsion system. Although PMPM(Permanent Magnet Propulsion Motor) propulsion system has relatively higher power, energy conversion efficiency and smaller volume than engine propulsion system, it also produces large amount of heat due to current flowing inside motor coils and change of magnetic field induced by iron core. The produced heat in stator and inverter largely affects motor efficiency and bearing lubrication and causes thermal aging while the system is on operation. So, we analyze the existing cooling system and submarine ESS (Energy Saving System) cooling system whose power consumption is reduced. HILS(Hardware In the Loop System) technique is used for the modelling of the submarine cooling system. To confirm the ESS cooling system characteristic, HILS is simulated using LabVIEW with hardware. As a result, the ESS cooling system has the characteristic of better temperature stability and less power consumption than the existing one.

태양열 실증 시스템의 냉방 및 급탕 일일 열성능 (Thermal performance of solar cooling and hot water for the demonstration system)

  • 이호;김상진;주홍진;곽희열
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.564-569
    • /
    • 2007
  • This study describes thermal performance of solar cooling and hot water for demonstration system with ETSC(Evacuated tubular solar collector) installed at Seo-gu art center of Kwangju. For demonstration study, a reading room with about 350㎡ was heated and cooled with the solar system. The system was consisted of ETSCs, storage tank, hot water supply tank, subsidiary boiler, subsidiary tank, absorption chiller, chiller storage tank, and cooling tower. The results of the experimental study indicated that the total solar energy gain as daily performance on a sunny day (August 25, 2007) with total daily radiation of $606\;W/m^2$ was 671 kWh, the collecting efficiency of 55%. In the case of supplies to heat source more than $83^{\circ}C$, cooling time operated by solar was driven 8.8 hours, cooling energy generated by solar system was 179 kWh and the solar cooling fraction was 79.2%, and hot water supplied with surplus heat source by the solar system was 201 kWh.

  • PDF

수평형 지중열교환기의 전열량 변화에 대한 실험적 연구 (A Experimental Study of Horizontal Geothermal Heat Exchanger System about Total Enthalpy Change)

  • 조성우;임병찬
    • 한국지열·수열에너지학회논문집
    • /
    • 제10권4호
    • /
    • pp.1-7
    • /
    • 2014
  • This paper is performed to investigate of cooling effect and total enthalpy variation on EAHES(Earth-to-Air Heat Exchanger System) that is buried 3m depth and 60m length. Using EAHES, the reduction of the sensible heat is obviously but latent heat is showed increased trend. Although the outdoor average latent heat accounts for 53.2% of total enthalpy, latent heat of the exit air from EAHES was raised as 58%. For improving cooling effect of EAHES, it has to considered that how to remove the latent heat from EAHES.

Experimental Study on Heat and Mass transfer Coefficient Comparison Between Counterflow Types and Parallel in Packed Tower of Dehumidification System

  • Sukmaji, I.C.;Choi, K.H.;Yohana, Eflita;Hengki R, R.;Kim, J.R.
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2009년도 춘계학술발표대회 논문집
    • /
    • pp.162-169
    • /
    • 2009
  • In summer electrical energy is consumed in very high rate. It is used to operate conventional air conditioning system. Hot and humid air can germinate mould spores, encourage ill health, and create physiological stress (discomfort). Dehumidifier solar cooling effect is the one alternative solution saving electrical energy. We use surplus heat energy in the summer, to get cooling effect and then to get human reach to comfort condition. These devices have two system, dehumidifier and regeneration system. This paper will be focus in dehumidifier system. Dehumidifier system use for absorbing moisture in the air and decreasing air temperature. When the liquid desiccant as strong solution contact with the vapor air in the packed tower, it works. The heat and mass transfer performances of flow pattern in the packed tower of dehumidifier are analyzed and compared in detail. In this experiment was introduced, the flow patterns are parallel flow and counter flow. The performance of these flow patterns will calculate from air side. Which is the best flow pattern that gave huge mass transfer rate? The proposed dehumidifier flow pattern will be helpful in the design and optimization of the dehumidifier solar cooling system.

  • PDF

구동조건에 따른 전자레인지 내부 온도 분포 (Temperature Distributions of Inner Microwave for Various Working Conditions)

  • 최윤환;김동균
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권6호
    • /
    • pp.792-797
    • /
    • 2010
  • 가정용 조리기구인 전자레인지는 구동시 필요한 고주파의 형성을 위하여 고전압 발생장치와 고 전압 축전지 등의 장치가 사용된다. 이 장치들은 높은 전압에서 구동되기 때문에 다량의 열에너지를 방출한다. 따라서 방출된 열에너지는 전자레인지 본체의 온도를 상승시키는 요인이 된다. 본 연구에서는 쿨링팬 구동조건과 열에너지 발생조건에 따른 전자레인지 내부의 온도 분포를 해석하였다. 해석결과 쿨링팬에서 유출되는 공기의 속도가 증가함에 따라 내부 온도가 감소하는 것을 확인하였으며 감소하는 정도를 정량적으로 분석하였다. 그리고 열에너지 방출량을 조정하여 내부 온도분포를 조사하였다.

지열히트펌프와 지역냉난방 시스템의 운영사례를 중심으로 경제성 비교분석 연구 (A Study of Comparative Economic Evaluation for the System of Ground Source Heat Pump and District Heating and Cooling:Focusing on the Analysis of Operation Case)

  • 이기창;홍준희;공형진
    • 설비공학논문집
    • /
    • 제28권3호
    • /
    • pp.103-109
    • /
    • 2016
  • The purpose of this study is to perform comparative economic evaluation for the systems of ground source heat pump (GSHP) and district heating and cooling (DHC) by focusing on the analysis of operation case of GSHP. The adapted research object is a public office building located in Seoul. The capacity of ground source pump is about 3,900 kW. Ground heat exchanger is closed loop type. The analysis period for life cycle cost is 30 years. Economic evaluation is assessed from the viewpoints of the following four parts: initial cost, energy cost, maintenance and replacement cost, and environment cost. The total life cycle cost of GSHP is approximately 8,447 million won. The cost of the DHC System is approximately 3,793 million won. The cost of the DHC is approximately 46% lower than GSHP system under the condition of current rate for GSHP and DHC.

일체형 원자로의 공랭식 열교환기 개념 연구 (A Conceptual Study of an Air-cooled Heat Exchanger for an Integral Reactor)

  • 문주형;김우식;김영인;김명준;이희준
    • 한국유체기계학회 논문집
    • /
    • 제19권2호
    • /
    • pp.49-54
    • /
    • 2016
  • A conceptual study of an air-cooled heat exchanger is conducted to achieve the long-term passive cooling of an integral reactor. A newly designed air-cooled heat exchanger is introduced in the present study and preliminary thermal sizing is demonstrated. This study mainly focuses on feasibility of an innovative air-cooled heat exchanger to extend the cooling period of the passive residual heat removal system(PRHRS) only in passive manners. A vertical shell-and-tube air-cooled heat exchanger is installed at the top of the emergency cooldown tank(ECT) to collect evaporated steam into condensate, which enables water inventory of the ECT to be kept. Finally, thermal sizing of an air-cooled heat exchanger is presented. The length and the number of tubes required, and also the height of a stack are calculated to remove the designated heat duty. The present study will contribute to an enhancement of the passive safety system of an integral reactor.

지중매설관 열교환장치의 성능분석(I) -연속운전실험에서의 온도특성 및 열교환성능- (Performance Analysis of an Earth Tube Heat Exchanger(I) -Temperature Variation Characteristics and Heat Exchange Performance on the Mode of Continuous Operation)

  • 김영복;백이
    • Journal of Biosystems Engineering
    • /
    • 제21권4호
    • /
    • pp.436-448
    • /
    • 1996
  • An earth tube soil air heat exchange system was designed, installed and operated as a single pass heat exchanger to utilize the geothermal energy as an natural energy source. This study was undertaken to investigate the potential of the heating and cooling, energy gain, heat exchange efficiency and coefficient of performance of the system. The system consisted of 30m in length and 30cm in diameter polyethylene pipes buried 2m deep in soil. Maximum heating and cooling performance were 2.51㎾ and 1.26㎾ at the air mass rate of 21cmm. Energy gain and coefficient of performance were the function of temperature difference between outside air and soil temperature. They were expressed as Q=0.33$ imes$$Delta T_{max}$+0.134(㎾) for energy gain and COP=0.44$ imes$$Delta T_{max}$+0.178 for coefficient of performance with correlation factor of 0.95. The mean of heat exchange efficiencies was 85.6%.

  • PDF