• Title/Summary/Keyword: Head impact performance

Search Result 88, Processing Time 0.023 seconds

A Study on Improving Shock Absorption Test of Safety Helmet (안전모의 충격 흡수성 시험 개선에 관한 연구)

  • Sang Woo Shim;Yong Su Sim;Jong Bin Lee;Seong Rok Chang
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.5
    • /
    • pp.36-42
    • /
    • 2023
  • In this study, 50 ABE-type hard hats were procured from five certified commercial manufacturers, and shock absorption tests were conducted in accordance with Protective Equipment Safety Certification Notice No. 2020-35. The tests were performed under both high- and low-temperature conditions, adhering to safety helmet testing standards. The highest shock transmission ranges were recorded in the tests, with an average energy range of 2,600-4,108 N at high temperatures and 2,316-3,991 N at low temperatures. All five hard hat models demonstrated a maximum transmitted impact force below 4,450 N, without any loss of cap and attachment functionality, confirming their compliance with performance standards. Furthermore, we evaluated the side impact performance of the safety helmets of each company, with an average range of 4,722-5,267 N. Company A exhibited the lowest measurement at 4,722 N. Comparing these results with international safety standards and the national shock absorption test criteria, it was observed that the maximum transmitted shock value using government-specified impact weight falls within the range of 4,450-5,000 N. However, it was noted that developed countries have established specific standards for the side impact forces on safety helmets, which are legally mandated. Consequently, it is imperative for South Korea to enhance its safety helmet side impact performance test methodology to align with domestic standards in the future.

Implementation of automatic mode for remote impact wrench task (로보트를 이용한 원격조작 임팩트렌치 작업의 자동수행 기능부 구현)

  • 박영수;박병석;이재설
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.832-837
    • /
    • 1991
  • After many years of proliferation, the nuclear industry is indebted for a formidable consequence, the safe management of spent fuel. Naturally, the high radioactivity involved with such process motivates the development of effective telerobotic systems. Nevertheless, the existing master-slave type of tele manipulators are limited in effectiveness by the human operator's limited sensory and manipulation capabilities. This paper presents the result of a research effort to resolve such problems by assigning the slave manipulator a certain degree of intelligence; sensing and actuation. In the presented system, a perception-action loop is achieved using ultrasonic range sensor and laser distance sensor interfaced with the PUMA 760 industrial robot system, and applied to automating impact wrenching task for unbolting the lid of nuclear spent fuel cask. The perception-action loop performs determination of the cask location, collision avoidance and centering of the impact wrench onto the bolt head. To aid the insertion task and to provide versatility a mounting module consisting of an RCC device and an automatic tool changer is designed and implemented. The performance of the developed system is tested on the model cask and the result is given.

  • PDF

Design and Simulation of Very Low Head Axial Hydraulic Turbine with Variation of Swirl Velocity Criterion

  • Muis, Abdul;Sutikno, Priyono
    • International Journal of Fluid Machinery and Systems
    • /
    • v.7 no.2
    • /
    • pp.68-79
    • /
    • 2014
  • The type of turbine developed is based on the very low head of water potential source for the electric power production. The area of research is focused for the axial water turbine that can be applied at the simple site open channel with has a very low cost and environmental impact compared to the conventional hydro installation. High efficiency of axial turbine which applied to the very low potential head will made this type of turbine can be used at wider potential site. Existing irrigation weir and river area will be the perfect site for this turbine. This paper will compare the effects of the variation of swirl velocity criterion during the design of the blade of guide vane and rotor of the turbine. Effects of the swirl velocity criterion is wider known as a vortex conditions (free vortex, force vortex and swirl velocity constant), and the free vortex is the very popular condition that applied by most of turbine designer, therefore will be interesting to do a comparison against other criterion. ANSYS Fluent will be used for simulation and to determine the predictive performance obtained by each of design criteria.

Development of Drifter's Hydraulic System Model and Its Validation (드리프터의 유압시스템 해석모델 개발 및 신뢰성 검토)

  • Noh, D.K.;Jang, J.S.;Seo, J.H.;Kim, H.S.;Park, S.H.
    • Journal of Drive and Control
    • /
    • v.11 no.3
    • /
    • pp.14-21
    • /
    • 2014
  • The goal of this study drifter is to understand the operating mechanism of a drifter and to suggest a reliable analysis model which can be used for evaluating the drifter's performance from the viewpoint of impact frequency and energy. For this, the working principle of drifter and functions of its main components were analyzed, and a simulation model was developed based on the analysis. The model was validated using experimental tests on a test-bench. A comparative study of simulation and experimental results indicated that the suggested model accurately represents the real drifter system in terms of impact frequency and impact energy per blow.

Effect of air inflow on the performance of a 50kW-class cross-flow turbine (50kW급 횡류수차 내 공기 유입이 성능에 미치는 영향)

  • Kim, Jun-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.4
    • /
    • pp.418-423
    • /
    • 2014
  • Small hydropower has been considered as a solution to resolve the problem of exhaustion of fossil fuel and industrial pollution. In this study, we developed and tested a Cross-Flow Turbine with two guide vanes to optimize the small hydropower for the site condition with large fluctuation of head and flow rate. Furthermore, in the condition of constant inlet head, CFD analysis was carried out to analyze the effect of air suction and valve position on the performance characteristics. The results showed that the air suction can minimize the hydraulic loss caused by the Recirculation flow in the runner passage and flow impact on main shaft so that it can increase the turbine efficiency and output power.

AI Performance Based On Learning-Data Labeling Accuracy (인공지능 학습데이터 라벨링 정확도에 따른 인공지능 성능)

  • Ji-Hoon Lee;Jieun Shin
    • Journal of Industrial Convergence
    • /
    • v.22 no.1
    • /
    • pp.177-183
    • /
    • 2024
  • The study investigates the impact of data quality on the performance of artificial intelligence (AI). To this end, the impact of labeling error levels on the performance of artificial intelligence was compared and analyzed through simulation, taking into account the similarity of data features and the imbalance of class composition. As a result, data with high similarity between characteristic variables were found to be more sensitive to labeling accuracy than data with low similarity between characteristic variables. It was observed that artificial intelligence accuracy tended to decrease rapidly as class imbalance increased. This will serve as the fundamental data for evaluating the quality criteria and conducting related research on artificial intelligence learning data.

Comparison of Golf Putting Performance on Transcranial Direct Current Stimulation (경두개직류자극 유뮤에 따른 골프 퍼팅 수행력 비교 분석)

  • Lee, Jae-Woo;Park, Jun-Sung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.1476-1484
    • /
    • 2021
  • The purpose of this study was to compare the golf performance on transcranial direct current stimulation(tDCS). Ten collegiate golfers were participated. SAMPutt basic unit was used to analyze the kinematic data of putter head. A putting platform and a tDCS were used for putting tasks. It was performed paired t-test to compare between before tDCS and after tDCS. A significant level of .05 using SPSS 24.0. Face at aim and backswing variables of putter head were significantly different during flat putting. Impact spot of putter head was significantly different during 2° of hook slope. However, there were not significantly different others slope angle. It was found that transcranial direct current stimulation had a positive effect on kinematic variables. Based on these results, further research is needed to confirm the effect of transcranial direct current stimulation on body stability during putting task.

A Kinematical Characteristic Analysis of a Iron fade-shot with a Golf Swills (아이언 페이드샷의 운동학적 특성 분석)

  • Lee, Kyung-Il;Oh, Jong-Sun;Chung, Jin-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.2
    • /
    • pp.311-322
    • /
    • 2009
  • Using the 3-D analysis, this study winpared and analyzed the 'fade-shot swing' which is one of the golf technique. The subjects of this study were 3 male pro golfers they experimented with only a 7 iron. The purpose was to enhance their performance by producing the important kinematical parameters, finding out the features in them and providing the data to a coach and players. As a result, the position of the club head showed from the outside orbit to the inside orbit. When position of the center of mass moved backwards, the probability of the failure of the fade-shot increased. Cocking angle had an effect on easing the wrist for a smooth follow-through after the impact. It showed that the changes in the shoulder movement was made first and followed by the waist. The hip joint angular velocity achieved a smooth fade-shot motion due to the hitting delay also the velocity of the club-head was faster when uncocking was released at the time of impact.

The Study of Firm Performance for Education and Training: The Difference of Organization and Finance Performance (교육훈련이 기업성과에 미치는 영향 분석: 조직성과와 재무성과의 차이분석을 중심으로)

  • Lee, In Hwa;Lee, Sang Jik
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.13 no.5
    • /
    • pp.55-61
    • /
    • 2018
  • The main purpose of this study is to test the effects of education and training invest of firm performance and to find the strategy of human resources development to industry include company and government, each stakeholder etc. For this purpose, this study empirical tested the causality, effects between education and training and firm performance. Using the HCCP panel data set, panel analysis model is performed with the dependent variables. The results of the study are summarized as follows. First, education and training has a significant impact on the firm sales per employee head. But there is no evidence for the effect of education and training on the net profit per employee head. These study results indicate that firms have to increase the concern and invest for education and training.

Nonlinear numerical analysis of influence of pile inclination on the seismic response of soil-pile-structure system

  • Lina Jaber;Reda Mezeh;Zeinab Zein;Marc Azab;Marwan Sadek
    • Geomechanics and Engineering
    • /
    • v.34 no.4
    • /
    • pp.437-447
    • /
    • 2023
  • Inclined piles are commonly used in civil engineering constructions where significant lateral resistance is required. Many researchers proved their positive performance on the seismic behavior of the supported structure and the piles themselves. However, most of these numerical studies were done within the framework of linear elastic or elastoplastic soil behavior, neglecting therefore the soil non-linearity at low and moderate soil strains which is questionable and could be misleading in dynamic analysis. The main objective of this study is to examine the influence of the pile inclination on the seismic performance of the soil-pile-structure system when both the linear elastic and the nonlinear soil models are employed. Based on the comparative responses, the adequacy of the soil's linear elastic behavior will be therefore evaluated. The analysis is conducted by generating a three-dimensional finite difference model, where a full interaction between the soil, structure, and inclined piles is considered. The numerical survey proved that the pile inclination can have a significant impact on the internal forces generated by seismic activity, specifically on the bending moment and shear forces. The main disadvantages of using inclined piles in this system are the bending forces at the head and pile-to-head connection. It is crucial to account for soil nonlinearity to accurately assess the seismic response of the soil-pile-structure system.