• 제목/요약/키워드: Harvesting efficiency

검색결과 344건 처리시간 0.026초

다양한 사용자 분포 환경에서의 비결합 무선 에너지 하베스팅 네트워크의 에너지 효율 (Energy Efficiency of Decoupled RF Energy Harvesting Networks in Various User Distribution Environments)

  • 황유민;선영규;신요안;김동인;김진영
    • 한국ITS학회 논문지
    • /
    • 제17권4호
    • /
    • pp.159-167
    • /
    • 2018
  • 본 논문에서는 다중 사용자 기반의 비결합 무선 에너지 하베스팅 네트워크에서 에너지 효율을 최적화하는 알고리즘을 제안하고 사용자들의 다양한 지리적 분포 시나리오를 가정하여 에너지 효율의 변화의 트랜드를 분석 및 실험하였다. 무선 데이터 전송 및 무선 에너지 충전이 동시에 이루어지는 무선 에너지 하베스팅 네트워크에서는 에너지 효율 지표는 네트워크 성능을 판단하는 주요한 지표로서 이를 향상시키기 위해서 다양한 요소가 어떻게 영향을 줄 수 있는지 조사할 필요가 있다. 본 논문에서의 모의실험 결과에서 효과적으로 에너지 효율 내지 무선 전력전송 효율을 증대시키기 위해서 두 송신기 hybrid-access point (H-AP)와 power beacon (PB)을 기준으로 사용자들의 분포 형태가 중요한 요소라는 점을 확인할 수 있다.

사과 수확 로봇의 핸드 개발(I) - 사과 수확용 로봇의 핸드 개발 - (Development of Apple Harvesting Robot(I) - Development of Robot Hand for Apple Harvesting -)

  • 장익주;김태한;권기영
    • Journal of Biosystems Engineering
    • /
    • 제22권4호
    • /
    • pp.411-420
    • /
    • 1997
  • The mechanization efficiency using high ability machines such as tractors or combines in a paddy field rice farm is high. Mechanization in harvesting fruits and vegetables is difficult, because they are easy to be damaged. Therefore, Advanced techniques for careful handling fruits and vegetables are necessary in automation and robotization. An apple harvesting robot must have a recognition device to detect the positioning of fruit, manipulators which function like human arms, and hand to take off the fruit. This study is related to the development of a rotatic hand as the first stage in developing the apple harvesting robot. The results are summarized as follows. 1. It was found that a hand that was eccentric in rotatory motion, was better than a hand of semicircular up-and-down motion in harvesting efficiency. 2. The hand was developed to control changes in grasp forces by using tape-type switch sensor which was attatched to fingers' inside. 3. Initial finger positioning was set up to control accurate harvesting by using a tow step fingering position. 4. This study showed the possibility of apple harvesting using the developed robot hand.

  • PDF

비결합 무선 에너지 하비스팅 네트워크를 위한 최적 시간 스케줄링 알고리즘 (Optimal Time Scheduling Algorithm for Decoupled RF Energy Harvesting Networks)

  • 정준희;황유민;김진영
    • 한국위성정보통신학회논문지
    • /
    • 제11권2호
    • /
    • pp.55-59
    • /
    • 2016
  • 기존 무선에너지 하비스팅시스템에서 유저는 하나의 Hybirid-AP (H-AP)로부터 에너지와 정보를 동시에 받았다. 하지만 무선에너지 하비스팅은 거리가 멀수록 감쇄가 심하기 때문에 H-AP에서 거리가 먼 유저들은 낮은 하비스팅 효율 가진다 (이중 근거리/원거리 문제). 이러한 문제를 해결하기 위해서 본 논문은 Power beacon (PB)을 통해 유저에게 별도의 파워를 공급하는 비결합 무선에너지 하비스팅 네트워크를 시스템 모델로 사용하였다. 이 논문의 주된 목적은 다양한 제약 조건과 Quality of service (QoS), 그리고 Quality of harvested power (QoP)를 만족하면서 목적 함수인 Energy efficiency (EE)를 최대화 하는 것이다. 제안된 시스템은 라그랑지안 쌍대 분해법 이론을 기반으로 EE 최대화를 위한 최적의 시간 스케줄링 알고리즘을 제안한다. 이 알고리즘을 통해 프레임 분해 요소, H-AP의 송신파워, 그리고 PB의 송신파워의 최적 값과 EE의 최대값을 구할 수 있다. 모의 실험 결과는 제안된 알고리즘으로 파라미터가 최적 값으로 빠르게 수렴하고 제안된 모델의 성능이 기존의 시스템 모델보다 우수하다는 것을 증명한다.

Efficiency of methyl-esterified eggshell membrane biomaterials for intensified microalgae harvesting

  • Choi, Hee-Jeong
    • Environmental Engineering Research
    • /
    • 제22권4호
    • /
    • pp.356-362
    • /
    • 2017
  • This study investigates the use of methyl-esterified eggshell membranes (MESM) for the harvesting of microalgae species under various conditions. Eggshell membranes were esterified with HCl to impact polycationic characteristics. After methyl esterification, the negative surface charge property of eggshell membrane was changed from negative to positive for all pH values to improve microalgae sorption capacity. The harvesting efficiency of microalgae by MESM reached 78-99% for all pH ranges evaluated. In addition, a 150 mesh particle size and $10mg\;L^{-1}$ MESM dose were found to yield up to 98% microalgae harvesting. These results indicate that the high cationic charge of MESM strongly adsorbs the negatively-charged microalgae. MESM is biocompatible and can be applied to the harvest of microalgae.

보리의 기계수확체계(機械收穫體系) 시험(試驗) (A Study on Mechanized System of Barley Harvesting)

  • 김정수;이동현;백풍기;정두호
    • Journal of Biosystems Engineering
    • /
    • 제7권2호
    • /
    • pp.36-44
    • /
    • 1983
  • Farm population was rapidly decreasing due to shift of the people from farm sector to the non-farm sector caused by the economic growth of the country. Especially, a great shortage of farm labor in busy farming period in June and October is becoming a serious problem in maintaining or promoting land productivity. The peak of labor requirement in summer is caused by rice transplanting and barley harvesting. In order to reduce the restrictions imposed on farm management by the concurrence of labor requirement and the lack of labor, the experimental study for mechanization of barley harvesting has been carried out in the fields. 1. The machines for barley harvesting were knap-sack type reapers, windrow reaper (power tiller attachment), binder and combine. The order of higher efficiency of machine for barley harvesting was combine, binder, windrow reaper (WR), knapsack type reaper 1(KSTR1), and knap sack type reaper 2(KSTR2; mist and duster attachment). 2. The ratio of grain loss for the manual, binder, and combine plot was about four percent of total field yield. 3. The total yield of barley in 35 days and 40 days harvesting after heading were 514 kg and 507kg per 10 ares respectively. The yield of 35 days-plot was higher than other experimental plots. 4. The lowest yield was recorded in 30 days-plot due to the large quantity of immatured grains and having lighter 1000-grain weight. The ratio of immatured grains was 2.66 percent and 1000-grain weight was 29.4 grams. 5. The total harvesting cost of the windrow reaper was 10,178 won per 10 ares. It was the lowest value compared to other machines. The next were combine, binder, KSTR1, KSTR2, and manual in sequence. As a result, the optimum time of barley harvesting for mechanization was 35-40 days after heading. Combine, binder, and windrow reaper were recommended as the suitable machines for barley harvesting in the work efficiency. However, in total harvesting cost, the windrow reaper was the most promising machine for barley harvesting.

  • PDF

Electromagnetic energy harvesting from structural vibrations during earthquakes

  • Shen, Wenai;Zhu, Songye;Zhu, Hongping;Xu, You-lin
    • Smart Structures and Systems
    • /
    • 제18권3호
    • /
    • pp.449-470
    • /
    • 2016
  • Energy harvesting is an emerging technique that extracts energy from surrounding environments to power low-power devices. For example, it can potentially provide sustainable energy for wireless sensing networks (WSNs) or structural control systems in civil engineering applications. This paper presents a comprehensive study on harvesting energy from earthquake-induced structural vibrations, which is typically of low frequency, to power WSNs. A macroscale pendulum-type electromagnetic harvester (MPEH) is proposed, analyzed and experimentally validated. The presented predictive model describes output power dependence with mass, efficiency and the power spectral density of base acceleration, providing a simple tool to estimate harvested energy. A series of shaking table tests in which a single-storey steel frame model equipped with a MPEH has been carried out under earthquake excitations. Three types of energy harvesting circuits, namely, a resistor circuit, a standard energy harvesting circuit (SEHC) and a voltage-mode controlled buck-boost converter were used for comparative study. In ideal cases, i.e., resistor circuit cases, the maximum electric energy of 8.72 J was harvested with the efficiency of 35.3%. In practical cases, the maximum electric energy of 4.67 J was extracted via the buck-boost converter under the same conditions. The predictive model on output power and harvested energy has been validated by the test data.

An Input-Powered High-Efficiency Interface Circuit with Zero Standby Power in Energy Harvesting Systems

  • Li, Yani;Zhu, Zhangming;Yang, Yintang;Zhang, Chaolin
    • Journal of Power Electronics
    • /
    • 제15권4호
    • /
    • pp.1131-1138
    • /
    • 2015
  • This study presents an input-powered high-efficiency interface circuit for energy harvesting systems, and introduces a zero standby power design to reduce power consumption significantly while removing the external power supply. This interface circuit is composed of two stages. The first stage voltage doubler uses a positive feedback control loop to improve considerably the conversion speed and efficiency, and boost the output voltage. The second stage active diode adopts a common-grid operational amplifier (op-amp) to remove the influence of offset voltage in the traditional comparator, which eliminates leakage current and broadens bandwidth with low power consumption. The system supplies itself with the harvested energy, which enables it to enter the zero standby mode near the zero crossing points of the input current. Thereafter, high system efficiency and stability are achieved, which saves power consumption. The validity and feasibility of this design is verified by the simulation results based on the 65 nm CMOS process. The minimum input voltage is down to 0.3 V, the maximum voltage efficiency is 99.6% with a DC output current of 75.6 μA, the maximum power efficiency is 98.2% with a DC output current of 40.4 μA, and the maximum output power is 60.48 μW. The power loss of the entire interface circuit is only 18.65 μW, among which, the op-amp consumes only 2.65 μW.

F$\ddot{o}$rst energy transfer 를 적용한 준고체 DSSC 의 효율향상 (Enhanced Light Harvesting from F$\ddot{o}$rst-type resonance Energy Transfer in the Quasi-Solid State Dye-Sensitized Solar Cells)

  • 천종훈;이정관;양현석;김재홍
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 춘계학술대회 초록집
    • /
    • pp.117.1-117.1
    • /
    • 2011
  • We have demonstrated Forst-type resonance energy transfer (FRET) in the quasi-solid type dye-sensitized solar cells between organic fluorescence materials as an energy donor doped in polymeric gel electrolyte and ruthenium complex as an energy acceptor on surface of $TiO_2$. The strong spectral overlap of emission/absorption of energy donor and acceptor is required to get high FRET efficiency. The judicious choice of energy donor allows the enhancement of light harvesting characters of energy acceptor in quasi-solid dye sensitized solar cells which increase the power conversion efficiency. The enhanced light harvesting effect by the judicious choice/design of the fluorescence materials and sensitizing dyes permits the enhancement of photovoltaic performance of DSSC.

  • PDF

Development of Macro-Porous Silicon Based Dye-Sensitized Solar Cells with Improved Light Trapping

  • Aliaghayee, Mehdi;Fard, Hassan Ghafoori;Zandi, Ashkan
    • Journal of Electrochemical Science and Technology
    • /
    • 제7권3호
    • /
    • pp.218-227
    • /
    • 2016
  • The light harvesting efficiency is counted as an important factor in the power conversion efficiency of DSSCs. There are two measures to improve this parameter, including enhancing the dye-loading capacity and increasing the light trapping in the photoanode structure. In this paper, these tasks are addressed by introducing a macro-porous silicon (PSi) substrate as photoanode. The effects of the novel photoanode structure on the DSSC performance have been investigated by using energy dispersive X-ray spectroscopy, photocurrent-voltage, UV-visible spectroscopy, reflectance spectroscopy, and electrochemical impedance spectroscopy measurements. The results indicated that bigger porosity percentage of the PSi structure improved the both anti-reflective/light-trapping and dye-loading capacity properties. PSi based DSSCs own higher power conversion efficiency due to its remarkable higher photocurrent, open circuit voltage, and fill factor. Percent porosity of 64%, PSi(III), resulted in nearly 50 percent increment in power conversion efficiency compared with conventional DSSC. This paper showed that PSi can be a good candidate for the improvement of light harvesting efficiency in DSSCs. Furthermore, this study can be considered a valuable reference for more investigations in the design of multifunctional devices which will profit from integrated on-chip solar power.

무선 에너지 하비스팅 네트워크에서의 전력 제어 기법 (Power Control in RF Energy Harvesting Networks)

  • 황유민;신동수;김진영
    • 한국위성정보통신학회논문지
    • /
    • 제12권2호
    • /
    • pp.51-55
    • /
    • 2017
  • 본 논문에서는 RF 에너지 하비스팅 네트워크에서 최대 전송 파워량 제한 및 최소 채널 용량 달성에 관한 제약조건을 만족시키며 에너지 하비스팅율과 채널 용량을 최대화 시키는 연구를 진행하였다. 전력 분할 기법 (power-splitting scheme) 기반 안테나로 구성된 주파수 분할 다중접속 환경에서 하나의 액세스 포인트 (access point)로부터 무선 에너지와 정보를 사용자들에게 동시에 송수신하는 모델을 가정하였다. 네트워크 성능 지표로서 에너지 효율 (energy efficiency)을 정의하고 이를 최대화 시킬 수 있는 Lagrange 이중 분해 기반의 최적화 솔루션을 제안하였다. 모의실험 결과를 통해 제안한 솔루션이 설정된 제한조건들을 만족하면서 효과적으로 에너지 효율을 최대화시키는 것을 확인하였다.