• Title/Summary/Keyword: Harvesting Frequency

Search Result 194, Processing Time 0.028 seconds

A Study on the Fabrication and Characterization of Micro Pb(Zr,Ti)O3 Film Piezoelectric Cantilever Using MEMS Process for Energy Harvesting (MEMS 공정을 통한 마이크로 Pb(Zr,Ti)O3 박막 압전 외팔보 에너지 수확소자의 제작 및 특성 연구)

  • Lee, Junmyung;Chun, Inwoo;Kim, Moonkeun;Kwon, Kwang-Ho;Lee, Hyun Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.11
    • /
    • pp.831-835
    • /
    • 2013
  • In this study, we fabricated a micro $Pb(Zr,Ti)O_3$ (PZT) film piezoelectric cantilever with a Si proof mass and dual beams through MEMS process. The size of the beam and the integrated Si proof mass were about $4,320{\mu}m{\times}290{\mu}m{\times}12{\mu}m$ and $1,380{\mu}m{\times}880{\mu}m{\times}450{\mu}m$ each. To reduce the air damping and have the larger displacement of dual beams was used for design. After mounting micro PZT film piezoelectric cantilever on shaker, we measured the resonance frequency and a output voltage while making resonant frequency changed. The resonant frequency and the highest average power of the cantilever device were 110.2 Hz and 0.36 ${\mu}W$ each, at 0.8 g acceleration and 23.7 $k{\Omega}$ load resistance, respectively.

An Overview of Feathers Formation, Moults and Down Production in Geese

  • Kozak, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.6
    • /
    • pp.881-887
    • /
    • 2011
  • Feathers are one of the integument appendages that form the outer covering, or plumage, on birds. The goslings hatch with a downy coat of feathers formed in embryonic development. They moult the natal plumage into juvenile feathers between 3-5 weeks of age and than moult that juvenile plumage into adult plumage between 8-11 weeks of age. Feather weight of an adult goose makes up about 6.2% of its total body weight. Heritability of the feather production ability is relatively low ($h^2$ = 0.35). Within species or genotype, the quantity and composition of the plumage are affected by genetics (age, body weight or body surface area, feathering rate, sex) and environmental factors (nutrition and production system, weather, microclimate). After slaughter some 90-220 g marketable feathers can be obtained per goose. The yield of feathers and down from each hand-harvesting amounts to between 80 to 120 g per goose, depending upon the frequency and degree of completeness of the harvesting.

The Application of Piezoelectric Materials in Smart Structures in China

  • Qiu, Jinhao;Ji, Hongli
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.266-284
    • /
    • 2010
  • Piezoelectric materials have become the most attractive functional materials for sensors and actuators in smart structures because they can directly convert mechanical energy to electrical energy and vise versa. They have excellent electromechanical coupling characteristics and excellent frequency response. In this article, the research activities and achievements on the applications of piezoelectric materials in smart structures in China, including vibration control, noise control, energy harvesting, structural health monitoring, and hysteresis control, are introduced. Special attention is given to the introduction of semi-active vibration suppression based on a synchronized switching technique and piezoelectric fibers with metal cores for health monitoring. Such mechanisms are relatively new and possess great potential for future applications in aerospace engineering.

Performance Characteristics of Vibration Energy Harvesting Using [001] and [011]-Poled PMN-PZT Single Crystals ([001] 및 [011] 방향 분극의 압전 단결정 PMN-PZT 를 이용한 진동 에너지 수확 특성)

  • Sun, Kyung Ho;Kim, Young-Cheol;Kim, Jae Eun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.539-543
    • /
    • 2014
  • This work investigated the electromechanical performance of a cantilevered vibration energy harvester incorporating the single crystal PMN-PZT, manufactured with the most recent technology of solid-state single crystal growth. Single crystal PMN-PZTs with two different crystallographic axes such as [011] and [001] were considered. For the [011] orientation, because material properties such as the stiffness, piezoelectric strain coefficients are not the same in the directions normal to the crystallographic axis, the effects of the transversely anisotropy on the magnitude and frequency bandwidth of output power were also analyzed.

  • PDF

Development of a Potato Harvester for Tractors (트랙터용(用) 감자수확기(收穫機)의 개발(開發))

  • Kang, W.S.;Shin, Y.B.;Kim, S.H.;Hahm, Y.C.
    • Journal of Biosystems Engineering
    • /
    • v.18 no.1
    • /
    • pp.21-29
    • /
    • 1993
  • The purpose of this study was to develope a potato combine which can be attached to and controlled by three-point hitch of tractors. A vibrating mechanism was designed and constructed to dig potatoes, and to evaluate the effects of vibration on the potato harvesting performance of the test machine, potato separation from soil, harvesting loss, and damage to the potatoes. Three types of potato pick-up mechanisms were constructed and tested. Digging performance and material flow on the blade were improved as the vibrating amplitude and frequency increased and as the travel speed decreased. The sum of unrecovered and damaged potatoes was up to 7.8%. Three pick-up devices were not found to be useful by failing to elevate about 30% of dug potatoes to a given height.

  • PDF

Performance Characteristics of Vibration Energy Harvesting Using [001] and [011]-Poled PMN-PZT Single Crystals ([001] 및 [011] 방향 분극의 압전 단결정 PMN-PZT를 이용한 진동 에너지 수확 특성)

  • Kim, Jae Eun;Kim, Young-Cheol;Sun, Kyung Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.11
    • /
    • pp.890-897
    • /
    • 2014
  • This work investigated the electromechanical performance of a cantilevered vibration energy harvester incorporating the single crystal PMN-PZT, manufactured with the most recent technology of solid-state single crystal growth. The performances of single crystal PMN-PZTs with two different crystallographic axes such as [011] and [001] are compared with those of PZT ceramics. From the investigations, it is shown that the [001]-poled PMN-PZT is advantageous for the excitations containing single dominant frequency component, while the single crystal [011]-$d_{32}$ is superior in terms of the energy storage density and energy conversion efficiency.

Nonorthogonal multiple access multiple input multiple output communications with harvested energy: Performance evaluation

  • Toi Le-Thanh;Khuong Ho-Van
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.432-445
    • /
    • 2024
  • This paper demonstrates improved throughput and energy efficiency of wireless communications by exploiting nonorthogonal multiple access (NOMA), multiple input-multiple output (MIMO), and radio frequency energy harvesting (EH) technologies. To assess the performance of NOMA MIMO communications with EH (MMe), we consider the nonlinear characteristics of EH devices and propose explicit expressions for throughput and outage probability. Based on our results, the system performance is significantly mitigated by EH nonlinearity and is considerably improved by increasing the number of antennas. Additionally, by appropriately adjusting the system parameters, our NOMA MMe innovation can avert complete outages while optimizing system performance. Moreover, the results demonstrate the superiority of the NOMA MMe over its orthogonal multiple access MMe counterparts.

Fabrication of Artificial Sea Urchin Structure for Light Harvesting Device Applications

  • Yeo, Chan-Il;Kwon, Ji-Hye;Kim, Joon-Beom;Lee, Yong-Tak
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.380-381
    • /
    • 2012
  • Bioinspired sea urchin-like structures were fabricated on silicon by inductively coupled plasma (ICP) etching using lens-like shape hexagonally patterned photoresist (PR) patterns and subsequent metal-assisted chemical etching (MaCE) [1]. The lens-like shape PR patterns with a diameter of 2 ${\mu}m$ were formed by conventional lithography method followed by thermal reflow process of PR patterns on a hotplate at $170^{\circ}C$ for 40 s. ICP etching process was carried out in an SF6 plasma ambient using an optimum etching conditions such as radio-frequency power of 50 W, ICP power of 25 W, SF6 flow rate of 30 sccm, process pressure of 10 mTorr, and etching time of 150 s in order to produce micron structure with tapered etch profile. 15 nm thick Ag film was evaporated on the samples using e-beam evaporator with a deposition rate of 0.05 nm/s. To form Ag nanoparticles (NPs), the samples were thermally treated (thermally dewetted) in a rapid thermal annealing system at $500^{\circ}C$ for 1 min in a nitrogen environment. The Ag thickness and thermal dewetting conditions were carefully chosen to obtain isolated Ag NPs. To fabricate needle-like nanostructures on both the micron structure (i.e., sea urchin-like structures) and flat surface of silicon, MaCE process, which is based on the strong catalytic activity of metal, was performed in a chemical etchant (HNO3: HF: H2O = 4: 1: 20) using Ag NPs at room temperature for 1 min. Finally, the residual Ag NPs were removed by immersion in a HNO3 solution. The fabricated structures after each process steps are shown in figure 1. It is well-known that the hierarchical micro- and nanostructures have efficient light harvesting properties [2-3]. Therefore, this fabrication technique for production of sea urchin-like structures is applicable to improve the performance of light harvesting devices.

  • PDF

Fabrication and Energy Harvesting Characteristics of Water Energy Harvester Using Piezoelectric Ceramic Bimorph Cantilever (바이몰프형 압전세라믹 캔틸레버를 이용한 수력에너지 하베스터 모듈 제작 및 발전 특성)

  • Kim, Kyoung-Bum;Kim, Chang-Il;Yun, Ji-Sun;Jeong, Young Hun;Nahm, Jung Hee;Cho, Jeong-Ho;Paik, Jong-Hoo;Nahm, Sahn;Seong, Tae-Hyeon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.943-948
    • /
    • 2012
  • A new water energy harvester module, which is composed of piezoelectric bimorph cantilevers, harvesting circuit and a shaft with 16 impellers at a center axis, was fabricated for energy harvesting application. High energy density $Pb(Zr_{0.54}Ti_{0.46})O_3$ + 0.2 wt% $Cr_2O_3$ + 1.0 wt% $Nb_2O_5$ (PZT-CN) thick film obtained by tape casting method was used for the bimorph cantilever. The PZT-CN bimorph cantilever with a proof mass of 49 g exhibited extremely high output power of 22.5 mW (24 $mW//cm^3$) at resonance frequency of 11 Hz. In addition, the fabricated water energy harvester has a cylindrical structure with 48 bimorph cantilevers clamped at inner surface. A significantly high output power of 433 mW was obtained at a rotation speed of 120 rpm with a resistive load of $500{\Omega}$ for the water energy harvester.

Power Allocation and Splitting Algorithm for SWIPT in Energy Harvesting Networks with Channel Estimation Error (채널 추정 오차가 존재하는 에너지 하베스팅 네트워크에서 SWIPT를 위한 파워 할당 및 분할 알고리즘)

  • Lee, Kisong;Ko, JeongGil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.7
    • /
    • pp.1277-1282
    • /
    • 2016
  • In the next generation wireless communication systems, an energy harvesting from radio frequency signals is considered as a method to solve the lack of power supply problem for sensors. In this paper, we try to propose an efficient algorithm for simultaneous wireless information and power transfer in energy harvesting networks with channel estimation error. At first, we find an optimal channel training interval using one-dimensional exhaustive search, and estimate a channel using MMSE channel estimator. Based on the estimated channel, we propose a power allocation and splitting algorithm for maximizing the data rate while guaranteeing the minimum required harvested energy constraint, The simulation results confirm that the proposed algorithm has an insignificant performance degradation less than 10%, compared with the optimal scheme which assumes a perfect channel estimation, but it can improve the data rate by more than 20%, compared to the conventional scheme.