Browse > Article
http://dx.doi.org/10.5050/KSNVE.2014.24.11.890

Performance Characteristics of Vibration Energy Harvesting Using [001] and [011]-Poled PMN-PZT Single Crystals  

Kim, Jae Eun (School of Mechanical and Automotive Engineering, Catholic University of Daegu)
Kim, Young-Cheol (Department of System Dynamics, Korea Institute of Machinery & Materials)
Sun, Kyung Ho (Department of System Dynamics, Korea Institute of Machinery & Materials)
Publication Information
Transactions of the Korean Society for Noise and Vibration Engineering / v.24, no.11, 2014 , pp. 890-897 More about this Journal
Abstract
This work investigated the electromechanical performance of a cantilevered vibration energy harvester incorporating the single crystal PMN-PZT, manufactured with the most recent technology of solid-state single crystal growth. The performances of single crystal PMN-PZTs with two different crystallographic axes such as [011] and [001] are compared with those of PZT ceramics. From the investigations, it is shown that the [001]-poled PMN-PZT is advantageous for the excitations containing single dominant frequency component, while the single crystal [011]-$d_{32}$ is superior in terms of the energy storage density and energy conversion efficiency.
Keywords
Vibration Energy Harvesting; Piezoelectric Single Crystal; PMN-PZT; Energy Conversion Efficiency;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Ma, P. S., Kim, J. E. and Kim, Y. Y., 2009, Topology Optimization of a Cantilevered Piezoelectric Energy Harvester Having a Vibrating Base, Proceedings of the KSME Fall Annual Meeting, pp. 432-434.
2 Rupp, C. J., Evgrafov, A., Maute, K. and Dunn, M. L., 2009, Design of Piezoelectric Energy Harvesting Systems: A Topology Optimization Approach Based on a Multilayer Plates and Shells, Journal of Intelligent Material Systems and Structures, Vol. 20, pp. 1923-1939.   DOI
3 Wickenheiser, A. M. and Garcia, E., 2010, Power Optimization of Vibration Energy Harvesters Utilizing Passive and Active Circuits, Journal of Intelligent Material Systems and Structures, Vol. 21, pp. 1343-1361.   DOI   ScienceOn
4 Badel, A., Guyomar, D., Lefeuvre, E. and Richard, C., 2006, Piezoelectric Energy Harvesting Using a Synchronized Switch Technique, Journal of Intelligent Material Systems and Structures, Vol. 17, No. 8-9, pp. 831-839.   DOI
5 Erturk, A. and Inman, D. J., 2011, Piezoelectric Energy Harvesting, Wiley, United Kingdom.
6 Kim, J. E. and Kim, Y. Y., 2011, Analysis of Piezoelectric Energy Harvesters of a Moderate Aspect Ratio with a Distributed Tip Mass, ASME Journal of Vibration and Acoustics, Vol. 133, 041010.   DOI   ScienceOn
7 Ceracomp Co., Ltd. (www.ceracomp.com).
8 Piezo System, Inc. (www.piezo.com).
9 Islam, R. A. and Priya, S., 2006, Realization of High-energy Density Polycrystalline Piezoelectric Ceramics, Applied Physics Letters, Vol. 88, 032903.   DOI   ScienceOn
10 Richards, C. D., Anderson, M. J., Bahr, D. F. and Richards, R. F., 2004, Efficiency of Energy Conversion for Devices Containing a Piezoelectric Component, Journal of Micromechanics and Microengineering, Vol. 14, pp. 717-721.   DOI   ScienceOn
11 Ikeda, T., 1996, Fundamentals of Piezo-electricity, Oxford University Press, New York.
12 Patel, R., McWilliam, S. and Popov, A. A., 2011, A Geometric Parameter Study of Piezoelectric Coverage on a Rectangular Cantilever Energy Harvester, Smart Materials and Structures, Vol. 20, 085004.   DOI   ScienceOn
13 Roundy, S., Wright, P. K. and Rabaey, J., 2003, A Study of Low Level Vibrations as a Power SDources for Wireless Sensor Nodes, Computer Communications. Vol. 26, pp. 1131-1144.   DOI   ScienceOn
14 Cook-Chennault, K. A., Thambj, N. and Sastry, A. M., 2008, Powering MEMS Portable Devices-a Review of Non-regenerative and Regenerative Power Supply Systems with Special Emphasis on Piezoelectric Energy Harvesting Systems, Smart Materials and Structures. Vol. 17, 043001.   DOI   ScienceOn
15 Priya, S. and Inman, D. J., 2009, Energy Harvesting Technologies, Springer, New York.
16 Sodano, H. A., Inman, D. J. and Park, G., 2004, A Review of Power Harvesting from Vibration Using Piezoelectric Materials, The Shock and Vibration Digest. Vol. 36, pp. 197-205.   DOI   ScienceOn
17 Sodano, H. A. and Anton, S. R., 2007, A Review of Power Harvesting Using Piezoelectric Materials (2003-2006), Smart Materials and Structures, Vol. 16, R1-R21.   DOI   ScienceOn
18 Tang, L., Yang, Y. and Soh, C. K., 2010, Toward Broadband Vibration-based Energy Harvesting, Journal of Intelligent Material Systems and Structures, Vol. 21, pp. 1867-1897.   DOI   ScienceOn
19 Twiefel, J. and Westermann, H., 2013, Survey on Broadband Techniques for Vibration Energy Harvesting, Journal of Intelligent Material Systems and Structures, Vol. 24, pp. 1291-1302.   DOI   ScienceOn
20 Pellegrini, S. P., Tolou, N., Shenk, M. and Herder, J. L., 2013, Bistable Vibration Energy Harvesters: A Review, Journal of Intelligent Material Systems and Structures, Vol. 24, pp. 1303-1312.   DOI   ScienceOn
21 Lumentut, M. F. and Howard, I. M., 2011, Analytical Modeling of Self-powered Electro-mechanical Piezoelectric Bimorph Beams with Multidirectional Excitation, International Journal of Smart and Nano Materials. Vol. 2, No. 3, pp. 134-175.   DOI
22 Hudak, N. S. and Amatucci, G. G., 2008, Small-scale Energy Harvesting through Thermoelectric, Vibration, and Radiofrequency Power Conversion, Journal of Applied Physics, Vol. 103, 101301.   DOI   ScienceOn
23 Nguyen, S. D., Halvorsen, E. and Paprotny, I., 2013, Bistable Springs for Wideband Microelectro-mechanical Energy Harvesters, Applied Physics Letters. Vol. 102, 023904.   DOI   ScienceOn
24 Yang, J., Wen, Y., Li, P., Yue, X., Yu, Q. and Bai, X., 2013, A Two-dimensional Broadband Vibration Energy Harvester Using Magnetoelectric Transducer, Applied Physics Letters, Vol. 103, 243903.   DOI   ScienceOn
25 Moss, S. D., McLeod, J. E., Powlesland, I. G. and Galea, S. C., 2012, A bi-axial Magnetoelectric Vibration Energy Harvester, Sensors and Actuators A: Physical, Vol. 175, 165-168.   DOI   ScienceOn
26 Karami, M. A. and Inman, D. J., 2011, Analytical Modeling and Experimental Verification of the Vibrations of the Zigzag Microstructure for Energy Harvesting, ASME Journal of Vibration and Acoustics, Vol. 133, 011002.   DOI   ScienceOn
27 Patil, D. R., Zhou, Y., Kang, J.-E., Sharpes, N., Jeong, D.-Y., Kim, Y.-D., Kim, K. H., Priya, S. and Ryu, J., 2014, Anisotropic Self-biased Dual Phase Low Frequency Magneto-mechano-electric Energy Harvesters with Giant Power Densities, APL Materials, Vol. 2, 046102.   DOI
28 Sun, K. H., Kim, Y.-C. and Kim, J. E., 2014, A Small-form-factor Piezoelectric Vibration Energy Harvesters Using a Resonant Frequency-down Conversion, AIP Advances. Vol. 4, 107125.   DOI   ScienceOn
29 Sun, C., Qin, L., Li, F. and Wang, Q.-M., 2009, Piezoelectric Energy Harvesting Using Single Crystal $Pb(Mg_{1/3}Nb_{2/3})O_{3-x}PbTiO_{3}$ (PMN-PT) Device, Journal of Intelligent Material Systems and Structures. Vol. 20, pp. 559-568.   DOI
30 Yang, Y., Tang, L. and Li, H., 2009, Vibration energy harvesting device using macro-fiber composites, Smart Materials and Structures. Vol. 18, 115025.   DOI   ScienceOn
31 Challa, V. R., Prasad, M. G. and Fisher, F. T., 2009, A Coupled Piezoelectric-electromagnetic Energy Harvesting Technique for Achieving Increased Power Output through Damping Matching, Smart Materials and Structures. Vol. 18, 095029.   DOI   ScienceOn
32 Kim, J. E. and Kim, Y. Y., 2013, Power Enhancing by Reversing Mode Sequence in Tuned Mass-spring Unit Attached Vibration Energy Harvester, AIP Advances, Vol. 3, 072103.   DOI   ScienceOn
33 Dai, X., Wen, Y., Li, P., Yang, J. and Zhang, G., 2009, Modeling, Characterization and Fabrication of Vibration Energy Harvester Using Terfenol- D/PZT/Terfenol-D composite Transducer, Sensors and Actuators A: Physical. Vol. 156, pp. 350-358.   DOI   ScienceOn
34 Cho, S.-W., Son, J.-D., Yang, B.-S. and Choi, B.-K., 2009, Vibration-based Energy Harvester for Wireless Condition Monitoring System, Transactions of the Korean Society for Noise and Vibration Engineering, Vol. 19, No. 4, pp. 393-399.   과학기술학회마을   DOI   ScienceOn
35 Wang, Z. and Xu, Y., 2007, Vibration Energy Harvesting Device based on Air-spaced Piezoelectric Cantilevers, Applied Physics Letters, Vol. 90, 263512.   DOI   ScienceOn
36 Kim, J. E., 2013, Performance Study of Diagonally Segmented Piezoelectric Vibration Energy Harvester, Transactions of the Korean Society for Mechanical Engineers A., Vol. 37, No. 8, pp. 983-989.   DOI   ScienceOn
37 Kim, J. E. and Kim, Y. Y., 2009, Shape Design of a Cantilever-type Piezoelectric Energy Harvester, Proceedings of the KSNVE Annual Spring Conference, pp. 456-457.