• 제목/요약/키워드: Harmonic voltage

검색결과 1,272건 처리시간 0.033초

직렬형 능동필터와 수동형 병렬필터를 이용한 전원불평형 및 고조파 전류 보상 (Series-Active and Shunt-Pasive Type Power Filter Compensating Harmonic Currents and Unbalanced Voltages of Source)

  • 이지명;이동춘
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 전력전자학술대회 논문집
    • /
    • pp.565-568
    • /
    • 2001
  • A novel control scheme compensating for source voltage unbalance and harmonic current for series active power filters is proposed, where the references for voltage unbalance and current harmonic and phase angle is derived from the positive sequence component of the source voltage obtained simply through digital all-pass filters, which makes the whole control algorithm simpler than other methods using p-q theory. In addition, the harmonic component of source current is compensated by harmonic component of load voltage and therefore fundamental component of source current is considered as separated terms for the control issue. The validity of the proposed scheme has been verified by experimental results.

  • PDF

New Control Strategy for Conventional VSI in Islanded Microgrid to Enhance Voltage Quality under Nonlinear Loads

  • Dam, Duy-Hung;Lee, Hong-Hee
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2015년도 전력전자학술대회 논문집
    • /
    • pp.351-352
    • /
    • 2015
  • This paper proposed a new control strategy for voltage source inverter (VSI) of effective fifth and seventh harmonic reduction in the point of common coupling (PCC) in islanded microgrid under nonlinear load without any additional hardware devices. The non-linear load regularly causes such harmonic distortion, which harmfully affect the performance of other loads or other distributed generation (DG) sources connect to the PCC. In order to improve the quality of delivered output voltage, these harmonic must be rejected. The proposed control strategy is developed based on the current controller formed by resonant controller parallel with a proportional integral controller, which perform on the fundamental reference frame. The reference current is estimated based on the voltage harmonic and the injecting power. The simulation and experimental results are shown to verify the effectiveness of proposed control method.

  • PDF

영상분 3고조파 전압을 이용한 속도센서없는 유도전동기 벡터제어 시스템의 파라미터 변동 보상 (A Compensation Method of Parameter Variations for the Speed-Sensorless Vector Control System of Induction Motors using Zero Sequence Third Harmonic Voltages)

  • 최정수;김진수;김영석
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제48권2호
    • /
    • pp.75-82
    • /
    • 1999
  • A compensation method of the motor parameters using zero sequence third harmonic voltage is presented for the speed sensorless vector control of the induction motor considering saturation of the flux. Generally, the air-gap flux of the saturated induction motor contains the space harmonic components rotating with the synchronous frequency of the motor. Because the EMF of the saturated induction motor contains the zero sequence harmonic voltages at the neutral point of the motor, those harmonic voltages can be used as a saturation index. In this work, the rotor flux observer is firstly designed for the speed sensorless vector control of induction motor. And a novel measurement method of the space harmonic voltage and a compensation method of th LPF(Low Pass Filter) are proposed. For compensating the non-linear variations of the magnetizing inductance depending on the saturation level of the motor, the dominant third harmonic voltage of the motor is used as a saturation function of the air-gap flux. And the variation of the stator resistance owing to the motor temperature can also be measured with the phase angle between the impressed voltage vector and the zero sequence voltage. The validity of the proposed parameter compensation scheme in the speed sensorless vector control using rotor flux observer is verified by the result of the simulations and the experiments.

  • PDF

Novel Method for Circulating Current Suppression in MMCs Based on Multiple Quasi-PR Controller

  • Qiu, Jian;Hang, Lijun;Liu, Dongliang;Geng, Shengbao;Ma, Xiaonan;Li, Zhen
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1659-1669
    • /
    • 2018
  • An improved circulating current suppression control method is proposed in this paper. In the proposed controller, an outer loop of the average capacitor voltage control model is used to balance the sub-module capacitor voltage. Meanwhile, an individual voltage balance controller and an arm voltage balance controller are also used. The DC and harmonic components of the circulating current are separated using a low pass filter. Therefore, a multiple quasi-proportional-resonant (multi-quasi-PR) controller is introduced in the inner loop to eliminate the circulating harmonic current, which mainly contains second-order harmonic but also contains other high-order harmonics. In addition, the parameters of the multi-quasi-PR controller are designed in the discrete domain and an analysis of the stability characteristic is given in this paper. In addition, a simulation model of a three-phase MMC system is built in order to confirm the correctness and superiority of the proposed controller. Finally, experiment results are presented and compared. These results illustrate that the improved control method has good performance in suppressing circulating harmonic current and in balancing the capacitor voltage.

Harmonic Elimination in Three-Phase Voltage Source Inverters by Particle Swarm Optimization

  • Azab, Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권3호
    • /
    • pp.334-341
    • /
    • 2011
  • This paper presents accurate solutions for nonlinear transcendental equations of the selective harmonic elimination technique used in three-phase PWM inverters feeding the induction motor by particle swarm optimization (PSO). With the proposed approach, the required switching angles are computed efficiently to eliminate low order harmonics up to the $23^{rd}$ from the inverter voltage waveform, whereas the magnitude of the fundamental component is controlled to the desired value. A set of solutions and the evaluation of the proposed method are presented. The obtained results prove that the algorithm converges to a precise solution after several iterations. The salient contribution of the paper is the application of the particle swarm algorithm to attenuate successfully any undesired loworder harmonics from the inverter output voltage. The current paper demonstrates that the PSO is a promising approach to control the operation of a three-phase voltage source inverter with a selective harmonic elimination strategy to be applied in induction motor drives.

An Enhanced Harmonic Voltage Compensator for General Loads in Stand-alone Distributed Generation Systems

  • Trinh, Quoc-Nam;Lee, Hong-Hee;Chun, Tae-Won
    • Journal of Power Electronics
    • /
    • 제13권6호
    • /
    • pp.1070-1079
    • /
    • 2013
  • This paper develops an enhanced harmonic voltage compensator which is implemented with the aid of two repetitive controllers (RCs) in order to improve the output voltage performance of stand-alone distributed generation (DG) systems. The proposed harmonic voltage compensator is able to maintain the DG output voltage sinusoidal regardless of the use of nonlinear and/or unbalanced loads in the load side. In addition, it can offer good steady-state performance under various types of loads and a very fast dynamic response under load variations to overcome the slow dynamic response issue of the traditional RC. The feasibility of the proposed control strategy is verified through simulations and experiments.

Coordinated Control of DFIG System based on Repetitive Control Strategy under Generalized Harmonic Grid Voltages

  • Nian, Heng;Cheng, Chenwen;Song, Yipeng
    • Journal of Power Electronics
    • /
    • 제17권3호
    • /
    • pp.733-743
    • /
    • 2017
  • This paper develops a coordinated control strategy of the doubly fed induction generator (DFIG) system based on repetitive control (RC) under generalized harmonic grid voltage conditions. The proposed RC strategy in the rotor side converter (RSC) is capable of ensuring smooth DFIG electromagnetic torque that will enable the possible safe functioning of the mechanical components, such as gear box and bearing. Moreover, the proposed RC strategy in the grid side converter (GSC) aims to achieve sinusoidal overall currents of the DFIG system injected into the network to guarantee satisfactory power quality. The dc-link voltage fluctuation under the proposed control target is theoretically analyzed. Influence of limited converter capacity on the controllable area has also been studied. A laboratory test platform has been constructed, and the experimental results validate the availability of the proposed RC strategy for the DFIG system under generalized harmonic grid voltage conditions.

전압형 능동필터에 의한 교류고조파제거와 무효전력보상 (AC harmonic elimination and reactive power compensation by voltage-type active filter)

  • 김한성;최규하;신우석;이제필
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1988년도 한국자동제어학술회의논문집(국내학술편); 한국전력공사연수원, 서울; 21-22 Oct. 1988
    • /
    • pp.688-692
    • /
    • 1988
  • The active filter system for harmonic current compensation is presented in this paper. The active filter, composed of a three-phase voltage-type PWM inverter and the capacitor, compensates both the harmonic currents and the reactive power by injecting the PWM current to the ac line. This paper describes the principle of harmonic current compensation, the calculation circuits for the harmonic currents to be injected, the several compensation characteristics. Also the experimental results are shown to verify the theory proposed in this paper.

  • PDF

최소 샘플링의 고속푸리에 변환을 이용한 비정상 계통의 향상된 위상추종 및 고조파 검출 기법 (Improved Phase and Harmonic Detection Scheme using Fast Fourier Transform with Minimum Sampling Data under Distorted Grid Voltage)

  • 김현수;김경화
    • 전력전자학회논문지
    • /
    • 제20권1호
    • /
    • pp.72-80
    • /
    • 2015
  • In distributed generation systems, a grid-connected inverter should operate with synchronization to grid voltage. Considering that synchronization requires the phase angle of grid voltage, a phase locked loop (PLL) scheme is often used. The synchronous reference frame phase locked loop (SRF-PLL) is generally known to provide reasonable performance under ideal grid voltage. However, this scheme indicates performance degradation under the harmonic distorted or unbalanced grid voltage condition. To overcome this limitation, this paper proposes a phase and harmonic detection method of grid voltage using fast Fourier transform (FFT). To reduce the calculation time of FFT algorithm, minimum sampling data is taken from the voltage measurement to determine the phase angle and the magnitude of harmonic components. An experimental test setup for a grid-connected inverter system has been constructed. By comparative simulations and experiments under various abnormal grid voltage conditions, the proposed scheme has been proven to effectively track the phase angle of the grid voltage.

전기설비의 고조파 분석을 위한 측정 시스템의 개발 (Development of Measurement System for Harmonic Analysis of Electric Equipment)

  • 유재근;이상익;전정채
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 A
    • /
    • pp.259-261
    • /
    • 2002
  • Recently, according to the spread of semiconductor applied technology like motor speed control contrivance, power conversion installation and so on, harmonic ingredients occurred in switching operation flow into a distribution system and increase voltage distortion of distribution system and bring on obstacles like damage, lowering of capability, false operation and so on of various electrical installation. So, in order to consider a countermeasure to limit occurrence quantity of harmonic source, harmonic interception and others, precision measurement and analysis on voltage, current, power, power factor, the each ingredient of harmonic order, the percentage of total harmonic distortion and so forth are needed. In this paper monitoring system to measure and analyze power quality connected with power harmonics was developed and it's performance is verified by measuring and analyzing three-phase voltage and current of R, S, T in the three-phase and four-wire system using the developed measurement system.

  • PDF