• 제목/요약/키워드: Harmonic vibration

검색결과 628건 처리시간 0.032초

비틀림 하중을 받는 얇은 빔의 동적 불안정성에 관한 연구 (Study on the Dynamic Torsional Instability of a Thin Beam)

  • 박진선;주재만;박철희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1995년도 추계학술대회논문집; 한국종합전시장, 24 Nov. 1995
    • /
    • pp.185-190
    • /
    • 1995
  • In recent years, many researcher have been interested in the stability of a thin beam. Among them, Pai and Nayfeh[1] had investigated the nonplanar motion of the cantilever beam under lateral base excitation and chaotic motion, but this study is associated with internal resonance, i.e. one to one resonance. Also Cusumano[2] had made an experiment on a thin beam, called Elastica, under bending loads. In this experiment, he had shown that there exists out-of-plane motion, involving the bending and the torsional mode. Pak et al.[3] verified the validity of Cusumano's experimental works theoretically and defined the existence of Non-Local Mode(NLM), which is came out due to the instability of torsional mode and the corresponding aspect of motions by using the Normal Modes. Lee[4] studied on a thin beam under bending loads and investigated the routes to chaos by using forcing amplitude as a control parameter. In this paper, we are interested in the motion of a thin beam under torsional loads. Here the form of force based on the natural forcing function is used. Consequently, it is found that small torsional loads result in instability and in case that the forcing amplitude is increasing gradually, the motion appears in the form of dynamic double potential well, finally leads to complex motion. This phenomenon is investigated through the poincare map and time response. We also check that Harmonic Balance Method(H.B.M.) is a suitable tool to calculate the bifurcated modes.

  • PDF

Bandgap capability of hybrid Kirigami inspired cellular structures

  • Del Broccolo, S.;Ouisse, M.;Foltete, E.;Scarpa, F.
    • Advances in aircraft and spacecraft science
    • /
    • 제6권6호
    • /
    • pp.479-495
    • /
    • 2019
  • Periodic cellular core structures included in sandwich panels possess good stiffness while saving weight and only lately their potential to act as passive vibration filters is increasingly being studied. Classical homogeneous honeycombs show poor vibracoustic performance and only by varying certain geometrical features, a shift and/or variation in bandgap frequency range occurs. This work aims to investigate the vibration filtering properties of the AUXHEX "hybrid" core, which is a cellular structure containing cells of different shapes. Numerical simulations are carried out using two different approaches. The first technique used is the harmonic analysis with commercially available software, and the second one, which has been proved to be computationally more efficient, consists in the Wave Finite Element Method (WFEM), which still makes use of finite elements (FEM) packages, but instead of working with large models, it exploits the periodicity of the structure by analysing only the unit cell, thanks to the Floquet-Bloch theorem. Both techniques allow to produce graphs such as frequency response plots (FRF's) and dispersion curves, which are powerful tools used to identify the spectral bandgap signature of the considered structure. The hybrid cellular core pattern AUXHEX is analysed and results are discussed, focusing the investigation on the possible spectral bandgap signature heritage that a hybrid core experiences from their "parents" homogeneous cell cores.

하이브리드 제어 알고리즘을 이용한 덕트내 능동소음제어 (Active Noise Control in a Duct System Using the Hybrid Control Algorithm)

  • 이유엽;박상길;오재응
    • 한국소음진동공학회논문집
    • /
    • 제19권3호
    • /
    • pp.288-293
    • /
    • 2009
  • This study presents the active noise control of duct noise. The duct was excited by a steady-state harmonic and white noise force and the control was performed by one control speaker attached to surface of the duct. An adaptive controller based on filtered x LMS(FXLMS) algorithm was used and controller was defined by minimizing the square of the response of the error microphone. The assemble controller, which is called a hybrid ANC(active noise control) system, was combined with feedforward and feedback controller. The feedforward ANC attenuates primary noise that is correlated with the reference signal, while the feedback ANC cancels the narrowband components of the primary noise that are not observed by the reference sensor. Furthermore, in many ANC applications, the periodic components of noise are the most intense and the feedback ANC system has the effect of reducing the spectral peaks of the primary noise, thus easing the burden of the feedforward ANC filter.

마찰형 감쇠장치가 설치된 실물크기 3층 철골프레임의 진동대 실험 (Shaking Table Test of a Full Scale 3 Story Steel Frame with Friction Dampers)

  • 배춘희;김연환;이상현;박영필
    • 한국소음진동공학회논문집
    • /
    • 제17권9호
    • /
    • pp.862-873
    • /
    • 2007
  • Energy dissipation devices can be considered as an alternative for the seismic performance enhancement of existing structures based on the strengthened seismic design code. In this study, seismic response mitigation effects of friction dampers are investigated through the shaking table test of a full scale 3 story building structure. Frist, the bilinear force-displacement relationship of a structure-brace-friction damper system and the effect of brace-friction damper on the increase of frequency and damping ratio are identified. Second, frequency, displacement, and torque dependent characteristics of the friction damper are investigated by using harmonic load excitation tests. Finally, the shaking table tests are performed for a full scale 3 story steel frame. System identification results using random signal excitation indicated that brace-friction damper increased structural damping ratio and frequency, and El Centro earthquake test showed that brace-friction damper reduced the peak displacement and acceleration significantly. In particular, it was observed that the damping effect due to friction damper becomed obvious when the structure was excited by more intensive load causing frequent slippage of the friction dampers.

매개 가진되는 얇은 외팔보의 비선형 진동 안정성 (Stability of Nonlinear Oscillations of a Thin Cantilever Beam Under Parametric Excitation)

  • 방동준;이계동;조한동;정태건
    • 한국소음진동공학회논문집
    • /
    • 제18권2호
    • /
    • pp.160-168
    • /
    • 2008
  • This paper presents the study on the stability of nonlinear oscillations of a thin cantilever beam subject to harmonic base excitation in vertical direction. Two partial differential governing equations under combined parametric and external excitations were derived and converted into two-degree-of-freedom ordinary differential Mathieu equations by using the Galerkin method. We used the method of multiple scales in order to analyze one-to-one combination resonance. From these, we could obtain the eigenvalue problem and analyze the stability of the system. From the thin cantilever experiment using foamax, we could observe the nonlinear modes of bending, twisting, sway, and snap-through buckling. In addition to qualitative information, the experiment using aluminum gave also the quantitative information for the stability of combination resonance of a thin cantilever beam under parametric excitation.

발전기 고정자 이완에 의한 소음발생 고찰 (The Case Study of The Generator Noise generated by Stator Looseness)

  • 유무상;한승우;노철우;류길수;오승태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.527-532
    • /
    • 2014
  • Generator is the main equipment of a power plant that generates electric power. The line frequency is 60Hz, since that is operated at 3600rpm in fossil power plant. Therefore, the specific frequency 120Hz by the electromagnetic excitation force is generated inherently. If the looseness of stator at generator happens, abnormal sound that has 120Hz and the harmonic frequency is emitted from generator frame. In that case, binding of end-winding or re-wedging is needed for the reduction of sound level. In case of severe level of sound, belly band can be additionally installed at core. In this paper, the characteristics of generator sound is described and modal data is analyzed after installation of belly band.

  • PDF

압전소자가 부착된 보의 고주파수 동적응답에 대한 스펙트럼 요소 해석의 실험적 검증 (Experimental Verification of Spectral Element Analysis for the High-frequency Dynamic Responses of a Beam with a Surface Bonded Piezoelectric Transducer)

  • 김은진;손훈;박현우
    • 한국소음진동공학회논문집
    • /
    • 제19권12호
    • /
    • pp.1347-1355
    • /
    • 2009
  • This paper demonstrates the validity of spectral element analysis for modeling the high-frequency dynamic behaviors of a beam with a surface-bonded piezoelectric wafer through a laboratory test. In the spectral element analysis, the high-frequency electro-mechanical interaction can be considered properly with relatively low computational cost compared to the finite element analysis. In the verification test, a cantilever beam with a surface-bonded piezoelectric wafer is forced to be in steady-state motion by exerting the harmonic driving voltage signal on the piezoelectric wafer. A laser scanning vibrometer is used to obtain the overall dynamic responses of the structure such as resonance frequencies, the associated mode shapes, and frequency response functions up to 20 kHz. Then, these dynamic responses from the test are compared to those computed by the spectral element analysis. A two-dimensional finite analysis is conducted to obtain the asymptotic solutions for the comparison purpose as well.

진동대실험에 의한 동조액체기둥감쇠기의 동적특성 (Dynamic Characteristics of Tuned Liquid Column Dampers Using Shaking Table Test)

  • 민경원;박은천
    • 한국소음진동공학회논문집
    • /
    • 제19권6호
    • /
    • pp.620-627
    • /
    • 2009
  • Shaking table test was carried out to obtain dynamic characteristics of TLCDs with uniform and non-uniform sections for both horizontal and vertical tubes. The input to the table is harmonic acceleration with constant magnitude. The output is horizontal dynamic force which is measured by load cell installed below the TLCD. Transfer functions are experimentally obtained using the ratio of input and output. Natural frequency, the most important design factor, is compared to that by theoretical equation for TLCDs with five different water levels. System identification process is performed for experimentally obtained transfer functions to find the dynamic characteristics of head loss coefficient and effective mass of TLCDs. It is found that their magnitudes are larger for a TLCD with non-uniform section than with uniform section and natural frequencies are close to theoretical ones.

Dynamics of the oscillating moving load acting on the hydroelastic system consisting of the elastic plate, compressible viscous fluid and rigid wall

  • Akbarov, Surkay D.;Ismailov, Meftun I.
    • Structural Engineering and Mechanics
    • /
    • 제59권3호
    • /
    • pp.403-430
    • /
    • 2016
  • This paper studies the dynamics of the lineal-located time-harmonic moving-with-constant-velocity load which acts on the hydro-elastic system consisting of the elastic plate, compressible viscous fluid - strip and rigid wall. The plane-strain state in the plate is considered and its motion is described by employing the exact equations of elastodynamics but the plane-parallel flow of the fluid is described by the linearized Navier-Stokes equations. It is assumed that the velocity and force vectors of the constituents are continuous on the contact plane between the plate and fluid, and impermeability conditions on the rigid wall are satisfied. Numerical results on the velocity and stress distributions on the interface plane are presented and discussed and the focus is on the influence of the effect caused by the interaction between oscillation and moving of the external load. During these discussions, the corresponding earlier results by the authors are used which were obtained in the cases where, on the system under consideration, only the oscillating or moving load acts. In particular, it is established that the magnitude of the aforementioned interaction depends significantly on the vibration phase of the system.

신라대종의 진동과 음향 (Vibration and sound of Silla Great Bell)

  • 김석현;이중혁;변준호
    • 한국음향학회지
    • /
    • 제36권3호
    • /
    • pp.186-193
    • /
    • 2017
  • 신라대종은 성덕대왕신종을 계승하여 새 천년을 울리기 위해 제작되었다. 본 연구에서는 신라대종이 구조와 음향 측면에서 성덕대왕신종과 어떻게 유사한지를 조사하였다. 먼저 설계 및 제작 과정을 소개하고 두 종의 크기를 비교하여 유사성을 평가하였다. 한국 종소리의 세 가지 주요 특성은 웅장하고 조화로운 타격음, 역동적인 맥놀이와 길게 지속되는 여음이다. 이 세 가지 특성을 물리적 인자를 사용하여 객관적으로 평가한다. 이를 통하여 수려한 외관과 웅장하고 아름다운 소리를 내는 대형 한국 범종의 제작에 유용한 자료를 제공하는 것이 본 연구의 목적이다.