• 제목/요약/키워드: Harmonic vibration

검색결과 626건 처리시간 0.026초

Nonlinear damping and forced vibration analysis of laminated composite plates with composite viscoelastic core layer

  • Youzera, Hadj;Ali, Abbache;Meftah, Sid Ahmed;Tounsi, Abdelouahed;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • 제44권1호
    • /
    • pp.91-104
    • /
    • 2022
  • The purpose of the present work is to study the parametric nonlinear vibration behavior of three layered symmetric laminated plate. In the analytical formulation; both normal and shear deformations are considered in the core layer by means of the refined higher-order zig-zag theory. Harmonic balance method in conjunction with Galerkin procedure is adopted for simply supported laminate plate, to obtain its natural and damping properties. For these aims, a set of complex amplitude equations governed by complex parameters are written accounting for the geometric nonlinearity and viscoelastic damping factor. The frequency response curves are presented and discussed by varying the material and geometric properties of the core layer.

Seismic analysis of turbo machinery foundation: Shaking table test and computational modeling

  • Tripathy, Sungyani;Desai, Atul K
    • Earthquakes and Structures
    • /
    • 제12권6호
    • /
    • pp.629-641
    • /
    • 2017
  • Foundation plays a significant role in safe and efficient turbo machinery operation. Turbo machineries generate harmonic load on the foundation due to their high speed rotating motion which causes vibration in the machinery, foundation and soil beneath the foundation. The problems caused by vibration get multiplied if the soil is poor. An improperly designed machine foundation increases the vibration and reduces machinery health leading to frequent maintenance. Hence it is very important to study the soil structure interaction and effect of machine vibration on the foundation during turbo machinery operation in the design stage itself. The present work studies the effect of harmonic load due to machine operation along with earthquake loading on the frame foundation for poor soil conditions. Various alternative foundations like rafts, barrette, batter pile and combinations of barrettes with batter pile are analyzed to study the improvements in the vibration patterns. Detailed computational analysis was carried out in SAP 2000 software; the numerical model was analyzed and compared with the shaking table experiment results. The numerical results are found to be closely matching with the experimental data which confirms the accuracy of the numerical model predictions. Both shake table and SAP 2000 results reveal that combination of barrette and batter piles with raft are best suitable for poor soil conditions because it reduces the displacement at top deck, bending moment and horizontal displacement of pile and thereby making the foundation more stable under seismic loading.

전달강성계수법에 의한 격자형 구조물의 강제진동 해석 (Forced Vibration Analysis of Lattice Type Structure by Transfer Stiffness Coefficient Method)

  • 문덕홍;최명수
    • 소음진동
    • /
    • 제8권5호
    • /
    • pp.949-956
    • /
    • 1998
  • Complex and large lattice type structures are frequently used in design of bridge, tower, crane and aerospace structures. In general, in order to analyze these structures we have used the finite element method(FEM). This method is the most widely used and powerful method for structural analysis lately. However, it is necessary to use a large amount of computer memory and computational time because the FEM requires many degrees of freedom for solving dynamic problems exactly for these complex and large structures. For analyzing these structures on a personal computer, the authors developed the transfer stiffness coefficient method(TSCM). This method is based on the concept of the transfer of the nodal dynamic stiffness coefficient matrix which is related to force and displacement vector at each node. And we suggested TSCM for free vibration analysis of complex and large lattice type structures in the previous report. In this paper, we formulate forced vibration analysis algorithm for complex and large lattice type structures using extened TSCM. And we confirmed the validity of TSCM through computational results by the FEM and TSCM, and experimental results for lattice type structures with harmonic excitation.

  • PDF

능동 및 수동격리기를 적용한 진동계에 있어서 힘의 전달에 관한 연구 (Power Transmission from a Vibrating Mass to a Supporting Elate through Isolators)

  • Jin-Woo Lee;Colin H. Hansen
    • 한국안전학회지
    • /
    • 제16권4호
    • /
    • pp.200-207
    • /
    • 2001
  • 회전하는 기계에서 전달되는 조화적인 진동력이 수동 및 능동 진동 격리기를 통하여 중간 지지구조물에 어떻게 전달되는 것인가를 연구하였다. 이를 위하여 이론적인 모델은 모든 축에 대하여 수평과 수직방향의 힘과 모멘트를 고려하여 작성되었으며, 실험은 중간 구조물에 전달되는 회전방향 및 직선방향의 진동을 최소화하기 위하여 2단으로 구성된 중간 지지구조물에 부착된 진동 액츄에이터를 사용하였다. 진동원에 의하여 발생된 진동이 에러 센서에서 측정되었으며 제어원과 에러센서사이의 전달함수가 측정되었다. 1-100Hz사이의 주파수 범위에 있어서 기존의 수동격리기와 직렬로 설치된 능동격리기를 통하여 전달된 힘이 실제로 감소되었음을 실험결과를 통하여 확인하였다.

  • PDF

자기장에 의한 조화가진을 받는 구조물의 위상 최적화 (Topology Optimization of a Structure under Harmonic Excitation caused by Magnetic Fields)

  • 유정훈
    • 대한기계학회논문집A
    • /
    • 제25권10호
    • /
    • pp.1613-1620
    • /
    • 2001
  • This study is focused on the application of the homogenization design method (HDM) to reduce the vibration level of a structure excited by magnetic harmonic farces. This is accomplished by obtaining the optimal material distribution in a design domain to minimize the frequency response caused by the magnetic harmonic excitation. The Maxwell stress method is used to compute the magnetic force and the HDM is applied leer the optimization. The developed method is applied to a simple pole model that is excited by the harmonic bending farce caused by the current around an adjacent stator. Results shows that the HDM is valid to minimize the frequency response.

Comparison of Flywheel Systems for Harmonic Compensation Based on Wound/Squirrel-Cage Rotor Type Induction Motors

  • Kim, Yoon-Ho;Jeong, Yeon-Suk;Jeong, Yeon-Suk
    • Journal of Power Electronics
    • /
    • 제1권2호
    • /
    • pp.127-132
    • /
    • 2001
  • This paper describes two different systems which can compensate harmonic currents generated in a power system. As non-linear loads increase gradually in industry fields, harmonic current generated in the electric power network system also increases. Harmonic current makes a power network current distorted and generates heat, vibration and noise in the power machinery. Many approaches have been applied to compensate harmonic currents generated in the power system. Among various approaches, in this paper, two kinds are compared and evaluated. They are flywheel compensators bases on secondary excitation of WRIM(wounded rotor induction motor) and SCIM(squirrel cage induction motor). Both systems have a common structure. They use a flywheel as an energy storage device and use PWM inverters. The main differences are the size and rating of the converter used.

  • PDF

플라이휠을 장착한 농형/권선형 전동기를 이용한 두 고조파 보상 시스템의 비교 (Comparison of Harmonic Compensation Based on Wound/Squirrel-Cage Rotor Type Induction Motors With Flywheel)

  • 김윤호;이경훈;양성혁;박경수
    • 한국철도학회논문집
    • /
    • 제4권1호
    • /
    • pp.16-22
    • /
    • 2001
  • This paper describes two different systems which can compensate harmonic currents generated in the power system. As non-linear loads increase gradually in industry fields, harmonic current generated in the electric power network system also increases. Harmonic current makes a power network current distorted and generates heat, vibration, noise in the power machinery. Many approaches have been applied to compensate harmonic currents generated in the power network system. Among various approaches, in this paper, two kinds of approaches are compared and evaluated. They are flywheel compensator based on secondary excitation of wounded rotor induction motor(WRIM) and primary excitation of squirrel cage induction motor(SCIM). Both systems have a common structure. They use a flywheel as a energy storage device and use PWM inverters.

  • PDF

슬라이딩 모드제어기와 권선형 유도전동기를 이용한 고조파 및 역률보상 (Harmonic and Power Factor Compensation Using WRIM Based on Sliding Mode Controller)

  • 김승모;김윤호
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2002년도 추계학술대회 논문집
    • /
    • pp.7-11
    • /
    • 2002
  • This paper proposes an APF(Active Power Filter) with WRIM(Wounded Rotor Induction Motor) controlled by sliding mode which can compensate harmonic currents generated in a power system. As non-linear loads increase gradually in industry fields, harmonic current generated In the electric power network system also increases. Harmonic current makes a power network current distorted and generates heat, vibration and noise In the power machinery, Many approaches have been applied to compensate harmonic currents generated in the power system. Among various control strategy, in this paper, a sliding mode controlled systems is designed and evaluated. This is a flywheel compensator based on secondary excitation of WRIM(wounded rotor induction motor) with SMC(sliding mode controller). The proposed system uses a flywheel as an energy storage device. The designed control scheme is verified through simulation.

  • PDF