Browse > Article
http://dx.doi.org/10.12989/scs.2022.44.1.091

Nonlinear damping and forced vibration analysis of laminated composite plates with composite viscoelastic core layer  

Youzera, Hadj (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli)
Ali, Abbache (Laboratoire d'Etude des Structures et de Mecanique des Materiaux, Departement de Genie Civil, Faculte des Sciences et de la Technologie, Universite Mustapha Stambouli)
Meftah, Sid Ahmed (Laboratoire de Modelisation et Simulation Multi-echelle, Universite de Sidi Bel Abbes)
Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad)
Publication Information
Steel and Composite Structures / v.44, no.1, 2022 , pp. 91-104 More about this Journal
Abstract
The purpose of the present work is to study the parametric nonlinear vibration behavior of three layered symmetric laminated plate. In the analytical formulation; both normal and shear deformations are considered in the core layer by means of the refined higher-order zig-zag theory. Harmonic balance method in conjunction with Galerkin procedure is adopted for simply supported laminate plate, to obtain its natural and damping properties. For these aims, a set of complex amplitude equations governed by complex parameters are written accounting for the geometric nonlinearity and viscoelastic damping factor. The frequency response curves are presented and discussed by varying the material and geometric properties of the core layer.
Keywords
composite material; Galerkin Method; harmonic balance method; nonlinear vibration; sandwich plates;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 Youzera, H. and Meftah, S.A. (2017), "Nonlinear damping and forced vibration behaviour of sandwich beams with transverse normal stress", Compos. Struct., 179, 258-268. https://doi.org/10.1016/j.compstruct.2017.07.038.   DOI
2 Yu, T., Yin, S., Bui, T. Q., Xia, S., Tanaka, S. and Hirose, S. (2016), "NURBS-based isogeometric analysis of buckling and free vibration problems for laminated composites plates with complicated cutouts using a new simple FSDT theory and level set method", Thin-Walled Struct., 101, 141-156. https://doi.org/10.1016/j.tws.2015.12.008.   DOI
3 Zinoviev, P.A. and Ermakov, Y.N. (1994). "Energy dissipation in compos. materials", CRC Press. https://doi.org/10.1201/9780203757529.   DOI
4 Gibson, R.F. and Plunkett, R. (1977), "Dynamic stiffness and damping of fiber-reinforced composite materials", Shock Vib. Dig., 9-18. https://doi:10.1177/058310247700900205.   DOI
5 Heidari, F., Taheri, K., Sheybani, M., Janghorban, M. and Tounsi, A. (2021), "On the mechanics of nanocomposites reinforced by wavy/defected/aggregated nanotubes", Steel Compos. Struct., 38(5), 533-545. https://doi.org/10.12989/scs.2021.38.5.533.   DOI
6 Hu, H., Belouettar, S. and Potier-Ferry, M. (2008), "Review and assessment of various theories for modeling sandwich composites", Compos. Struct., 84(3), 282-292. https://doi.org/10.1016/j.compstruct.2007.08.007.   DOI
7 Kapuria, S., Dumir, P.C. and Jain, N.K. (2004), "Assessment of zigzag theory for static loading, buckling, free and forced response of composite and sandwich beams", Compos. Struct., 64(3-4), 317-327. https://doi.org/10.1016/j.compstruct.2003.08.013.   DOI
8 Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Oskouei, A.N. (2017a), "Visco-nonlocal-refined Zigzag theories for dynamic buckling of laminated nanoplates using differential cubature-Bolotin methods", Thin Wall. Struct., 113, 162-169. https://doi.org/10.1016/j.tws.2017.01.016.   DOI
9 Keshav, V. and Patel, S.N. (2020), "Non-Linear dynamic pulse buckling of laminated composite curved panels", Struct. Eng. Mech., 73(2), 181-190. https://doi.org/10.12989/sem.2020.73.2.181.   DOI
10 Kolahchi, R., Zarei, M.S., Hajmohammad, M.H. and Nouri, A. (2017b), "Wave propagation of embedded viscoelastic FGCNTreinforced sandwich plates integrated with sensor and actuator based on refined zigzag theory", Int. J. Mech. Sci., 130, 534-545. https://doi.org/10.1016/j.ijmecsci.2017.06.039.   DOI
11 Naghdi, P.M. (1956), "A survey of recent progress in theory of elastic shells", Appl Mech Rev., 9, 365-388.
12 Laib, S., Meftah, S.A., Youzera, H., Ziane, N. and Tounsi, A. (2021), "Vibration and damping characteristics of the masonry wall strengthened with bonded fibre composite patch with viscoelastic adhesive layer", Comput. Concrete., 27(3), 253-268. https://doi.org/10.12989/cac.2021.27.3.253.   DOI
13 Matlab (2006), The MathWorksInc, Natick, MA.
14 Moayedi, H., Ebrahimi, F., Habibi, M., Safarpour, H. and Foong, L.K. (2021), "Application of nonlocal strain-stress gradient theory and GDQEM for thermo-vibration responses of a laminated composite nanoshell", Eng. Comput., 37(4),3359-3374. https://doi.org/10.1007/s00366-020-01002-1.   DOI
15 Rao, M.K., Scherbatiuk, K., Desai, Y.M. and Shah, A.H. (2004), "Natural vibrations of laminated and sandwich plates", J. Eng. Mech., 130(11), 1268-1278.
16 Belabed, Z., Selim, M. M., Slimani, O., Taibi, N., Tounsi, A. and Hussain, M. (2021), "An efficient higher order shear deformation theory for free vibration analysis of functionally graded shells", Steel Compos. Struct., 40(2), 307-321. https://doi.org/10.12989/scs.2021.40.2.307.   DOI
17 Reddy, J.N. (1984), "A simple higher-order theory for laminated composite plates", J. Appl. Mech., 51, 745-752. https://doi.org/10.1115/1.3167719.   DOI
18 Thai, C.H., Nguyen-Xuan, H., Nguyen-Thanh, N., Le, T.H., Nguyen-Thoi, T. and Rabczuk, T. (2012), "Static, free vibration, and buckling analysis of laminated composite Reissner-Mindlin plates using NURBS-based isogeometric approach", Int. J. Numer. Meth. Eng., 91(6),571-603. https://doi.org/10.1002/nme.4282.   DOI
19 Tanzadeh, H. and Amoushahi, H. (2020), "Analysis of laminated composite plates based on different shear deformation plate theories", Struct. Eng. Mech., 75(2), 247-269. https://doi.org/10.12989/sem.2020.75.2.247.   DOI
20 Touratier, M. (1991), "An efficient standard plate theory", Int. J. Eng. Sci., 29(8), 901-916. https://doi.org/10.1016/0020-7225(91)90165-Y.   DOI
21 Afaq, K.S., Karama, M. and Mistou, S. (2003), "Un nouveau modele raffine pour les structures multicouches", Comput. Rendus Des., 13, 289-292.
22 Bert, C.W. and Chen, T.L.C. (1978), "Effect of shear deformation on vibration of antisymmetric angle-ply laminated rectangular plates", Int. J. Solids Struct., 14(6), 465-473. https://doi.org/10.1016/0020-7683(78)90011-2.   DOI
23 Demir, E. (2016), "A study on natural frequencies and damping ratios of composite beams with holes", Steel Compos. Struct., 21(6), 1211-1226. https://doi.org/10.12989/scs.2016.21.6.1211.   DOI
24 Bhimaraddi, A. (1995), "Sandwich beam theory and the analysis of constrained layer damping", J. Sound Vib., 179(4), 591-602. https://doi.org/10.1006/jsvi.1995.0039.   DOI
25 Chen, H., Song, H., Li, Y. and Safarpour, M. (2020), "Hygrothermal buckling analysis of polymer-CNT-fiber-laminated nanocomposite disk under uniform lateral pressure with the aid of GDQM", Eng. Comput., 1-25. https://doi.org/10.1007/s00366-020-01102-y.   DOI
26 Cheraghbak, A., Dehkordi, M.B. and Golestanian, H. (2019), "Vibration analysis of sandwich beam with nanocompositefacesheets considering structural damping effects", Steel Compos. Struct., 32(6), 795-806. https://doi.org/10.12989/scs.2019.32.6.795.   DOI
27 Rikards, R. (1993), "Finite element analysis of vibration and damping of laminated composites", Compos. Struct., 24(3), 193-204. https://doi.org/10.1016/0263-8223(93)90213-A.   DOI
28 Melo, J.D.D. and Radford, D.W. (2003), "Viscoelastic characterization of transversely isotropic composite laminae", J. Compos. Mater., 37(2), 129-145. https://doi.org/10.1106/002199803028990.   DOI
29 Rao, M.K. and Desai, Y.M. (2004), "Analytical solutions for vibrations of laminated and sandwich plates using mixed theory", Compos. Struct., 63(3-4), 361-373. https://doi.org/10.1016/S0263-8223(03)00185-5.   DOI
30 Dewangan, H.C. and Panda, S.K. (2020), "Numerical thermoelastic eigenfrequency prediction of damaged layered shell panel with concentric/eccentric cutout and corrugated (TD/TID) properties", Eng. Comput., 1-17. https://doi.org/10.1007/s00366-020-01199-1.   DOI
31 Timoshenko, S.P. (1922), "On the transverse vibrations of bars of uniform cross-section", London, Edinburgh, Dublin Philos. Mag. J. Sci., 43(253), 125-131. https://doi.org/10.1080/14786442208633855.   DOI
32 Wang, H., Yan, W. And Li, C. (2020), "Response of angle-ply laminated cylindrical shells with surface bonded piezoelectric layers", Struct. Eng. Mech., 76(5), 599-611. https://doi.org/10.12989/sem.2020.76.5.599.   DOI
33 Youzera, H., Meftah, S.A., Challamel, N. and Tounsi, A. (2012), "Nonlinear damping and forced vibration analysis of laminated composite beams", Compos. Part B: Eng., 43(3), 1147-1154. https://doi.org/10.1016/j.compositesb.2012.01.008.   DOI
34 Youzera, H., Meftah, S.A., Selim, M.M. and Tounsi, A. (2021), "Finite element method for axial and bending coupling effect on free vibration response of functionally graded beams under thermal environment", Mech. Adv. Mater. Struct., 1-15. https://doi.org/10.1080/15376494.2021.1979140.   DOI
35 Gibson, R.F. and Wilson, D.G. (1979), "Dynamic mechanical properties of fiber-reinforced composite materials", Shock Vib. Dig., 11(10), 3.   DOI
36 Abbache, A., Youzera, H., Abualnour, M., Houari, M.S., Meftah, S. and Tounsi, A. (2021), "Superharmonic vibrations of sandwich beams with fibre composite core layer based on the multiple scale method", Struct. Eng. Mech., 80(2)2, 201-210. https://doi.org/10.12989/sem.2021.80.2.201.   DOI
37 Allahkarami, F., Nikkhah-Bahrami, M. and Saryazdi, M.G. (2017), "Damping and vibration analysis of viscoelastic curved microbeam reinforced with FG-CNTs resting on viscoelastic medium using strain gradient theory and DQM", Steel Compos. Struct., 25(2), 141-155. https://doi.org/10.12989/scs.2017.25.2.141.   DOI
38 Benaoum, A., Youzera, H., Abualnour, M., Houari, M.S.A., Meftah, S.A. and Tounsi, A. (2021), "Superharmonic vibrations of sandwich beams with viscoelastic core layer with the multiple scale method", Struct. Eng. Mech., 80(6), 727-736. https://doi.org/10.12989/sem.2021.80.6.727.   DOI
39 Bert, C.W. and Francis, P.H. (1974), "Composite material mechanics", Struct. Mech., AIAA J., 12(9).1173-1186.
40 Demir, E. (2017b), "Vibration and damping behaviors of symmetric layered functional graded sandwich beams", Struct. Eng. Mech., 62(6), 771-780. https://doi.org/10.12989/sem.2017.62.6.771.   DOI
41 Hyer, M.W., Anderson, W.J. and Scott, R.A. (1976), "Non-linear vibrations of three-layer beams with viscoelastic cores I. Theory", J. Sound Vib., 46(1), 121-136. https://doi.org/10.1016/0022-460X(76)90822-1.   DOI
42 Kirchhoff, G.R. (1950), "Uber das gleichgewicht und die bewegung einer elastischen scheibe", 19(40), 51-88.
43 Kovac Jr, E.J., Anderson, W.J. and Scott, R.A. (1971), "Forced non-linear vibrations of a damped sandwich beam", J. Sound Vib., 17(1), 25-39. https://doi.org/10.1016/0022-460X(71)90131-3.   DOI
44 Youzera, H., Meftah, S.A. and Daya, E.M. (2017), "Superharmonic resonance of cross-ply laminates by the method of multiple scales", J. Comput. Nonlin. Dyn., 12(5). 054503. https://doi.org/10.1115/1.4036914.   DOI
45 Whitney, J.M. and Sun, C.T. (1973), "A higher order theory for extensional motion of laminated composites", J. Sound Vib., 30(1), 85-97. https://doi.org/10.1016/S0022-460X(73)80052-5.   DOI
46 Whitney, J.M. and Sun, C.T. (1974), "A refined theory for laminated anisotropic, cylindrical shells", J. Appl. Mech., 41, 47-60. https://doi.org/10.1115/1.3423312.   DOI