• 제목/요약/키워드: Harmonic resonance

검색결과 258건 처리시간 0.027초

부하투입이 고조파 공진에 미치는 영향에 대한 고찰 (A Study on the Harmonic Resonance during Restoration of Primary Restorative Transmission System)

  • 이흥재;이경섭;박성민;유원근
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.249-251
    • /
    • 2004
  • Harmonic resonant overvoltage during restoration of primary restorative transmission system originates in switching operations and nonlinear characteristics of equipments. Actually it is difficult to predict the occurrence of harmonic overvoltage, since they result from nonlinear characteristics of transformers and other equipments. This paper describes the analysis of domestic primary restorative transmission system using PSCAD/EMTDC. The harmonic resonance is verified and showed the relation with equipments which have nonlinear characteristics such as generator and transformer in this paper. And the solution to prevent harmonic resonance is proposed too. As a result, the PSCAD/EMTDC simulation showed slightly conflictive results that had been presented by IEEE Power System Restoration Working Group report.

  • PDF

전압 및 전류 고조파에 의한 커패시터 동작 특성 (A Study on the Characteristic of Capacitor by Voltage and Current Harmonics)

  • 김종겸;박영진;이동주;이은웅
    • 전기학회논문지P
    • /
    • 제58권3호
    • /
    • pp.257-262
    • /
    • 2009
  • Capacitor is basically used for the power-factor compensation and sometimes as the passive filter to reduce harmonics of nonlinear load. Since the impedance of capacitor is inversely proportional to the frequency. The harmonic current may result in the problems of voltage distortion and resonance. Capacitor has easily fall under by two harmonic components, a nonlinear load and a distorted utility voltage. The amplified harmonic current and voltage may damage power capacitor. Hence the pre-investigation of harmonic is needed before designing and application the power factor for reducing fault rate. In this paper, we analyzed that voltage and current with harmonics components act on the capacitor under the resonance condition. we concluded that both voltage and current harmonics have an bad effect on the capacitor and current harmonics is a bitter rather than effect by voltage harmonics.

PSCADI/EMTDC를 이용한 시송전계통의 고조파 공진현상 분석 II (Analysis of the Harmonic Resonance of Primary Restorative Transmission System Using PSCAD/EMTDC PART II)

  • 이흥재;유원근;이경섭;박성민
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.48-50
    • /
    • 2004
  • The energization of high voltage transmission lines and transformers, that is an inevitable process in most countries as the first restorative action for wide-area blackout, may induce overvoltages such as sustained overvoltage, transient overvoltage and harmonic resonant overvoltage. And these may cause damages to power system equipments or failure of surge arresters. The harmonic resonant overvoltage originates in switching operations and nonlinear characteristics of equipments. Actually it is difficult to predict the occurrence of harmonic overvoltage, since they result from nonlinear characteristics of transformers and other equipments. This paper describes the analysis of domestic primary restorative transmission system using PSCAD/EMTDC. The harmonic resonance is verified and the solution to prevent harmonic resonance is proposed in this paper. As a result, the PSCAD/EMTBC simulation showed slightly conflictive results that had been presented by IEEE Power System Restoration Working Group report.

  • PDF

공동접지방식 급전시스템의 고조파 해석 (Harmonic Analysis for Traction Power Supply System with Common Grounding)

  • 오광해;이한민;장동욱;김주락
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2000년도 추계학술대회 논문집
    • /
    • pp.688-695
    • /
    • 2000
  • This study presents an approach to model and to analyse traction power feeding system focused on the amplification of harmonic current. Through the research we can conclude the following: - The resonance frequency is not depend on the location of vehicle. The magnification of harmonic is, however, a function of the position of a train. - The resonance frequency is lower as catenary length is longer.

  • PDF

A High Gain and High Harmonic Rejection LNA Using High Q Series Resonance Technique for SDR Receiver

  • Kim, Byungjoon;Kim, Duksoo;Nam, Sangwook
    • Journal of electromagnetic engineering and science
    • /
    • 제14권2호
    • /
    • pp.47-53
    • /
    • 2014
  • This paper presents a high gain and high harmonic rejection low-noise amplifier (LNA) for software-defined radio receiver. This LNA exploits the high quality factor (Q) series resonance technique. High Q series resonance can amplify the in-band signal voltage and attenuate the out-band signals. This is achieved by a source impedance transformation. This technique does not consume power and can easily support multiband operation. The chip is fabricated in a $0.13-{\mu}m$ CMOS. It supports four bands (640, 710, 830, and 1,070MHz). The measured forward gain ($S_{21}$) is between 12.1 and 17.4 dB and the noise figure is between 2.7 and 3.3 dB. The IIP3 measures between -5.7 and -10.8 dBm, and the third harmonic rejection ratios are more than 30 dB. The LNA consumes 9.6 mW from a 1.2-V supply.

단상 전압 소스 인버터의 고조파 왜곡 보상을 위한 비례 다중 공진 제어기에 관한 연구 (A study on proportional multiple-resonance controller for harmonic distortion compensation of single phase VSIs)

  • 곽봉우
    • 전기전자학회논문지
    • /
    • 제27권3호
    • /
    • pp.319-326
    • /
    • 2023
  • 본 논문에서는 단상 전압 소스 인버터 (VSIs)의 강인한 출력 전압 제어를 위한 디지털 제어기 구현과 총 고조파 왜곡(T.H.D.v) 분석을 포함한 시뮬레이션 및 실험 결과를 제시한다. 일반적으로 VSI는 내부 루프의 전류 제어기에 비례 적분(PI) 제어기를 사용하고 외부 루프의 전압 제어기에 비례 공진 (PR) 제어기가 사용된다. 그러나, 비선형 부하에서 여전히 3차, 5차 및 7차와 같은 고차 고조파 왜곡이 발생한다. 따라서 본 논문에서는 고조파 왜곡을 억제하기 위해 홀수 고조파 주파수에 대한 공진 제어기를 포함한 비례 다중 공진 (PMR) 제어기를 제안한다. VSI 플랜트용 컨트롤러의 주파수 응답을 분석하고 PMR 컨트롤러를 설계합니다. 시뮬레이션을 통해 PI와 PMR을 전압 제어기로 사용할 때 출력 전압의 총 고조파 왜곡 특성을 비교 검증합니다. 선형 및 비선형 하중 조건이 모두 고려되었습니다. 마지막으로 PMR 제어기를 3kW급 VSIs 프로토 타입에 적용하여 그 유효성을 입증하였다.

비선형 외팔보의 일대일 공진에서의 위상변화 (Phase Change for One to One Resonance of Nonlinear Cantilever Beam)

  • 김명구;박철희;조종두;조호준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.703-708
    • /
    • 2006
  • The cantilever beam with nonlinearity has many dynamic characteristics of nonlinear vibration. Nonlinear terms of a flexible cantilever beam include inertia, spring, damping, and warping. When the beam is given basic harmonic excitation, it shows planar and nonplanar vibrations due to one-to-one resonance. And when the one-to-one resonance occurs, the flexible beam shows different behaviors in those vibrations. For the one-to-one resonance occurring in each mode, the phase value of the planar vibration is different from that of the nonlinear vibration. This paper investigates the phase change and the phase difference between such planar and nonplanar vibrations which are caused by one-to-one resonance.

  • PDF

비선형 외팔보의 일대일 공진에서의 위상변화 (Phase Change for One to One Resonance of Nonlinear Cantilever Beam)

  • 박철희;조종두;조기철;김명구
    • 한국소음진동공학회논문집
    • /
    • 제17권1호
    • /
    • pp.48-54
    • /
    • 2007
  • The cantilever beam with nonlinearity has many dynamic characteristics of nonlinear vibration. Nonlinear terms of a flexible cantilever beam include inertia, spring, damping, and warping. When the beam is given basic harmonic excitation, it shows planar and nonplanar vibrations due to one-to-one resonance. And when the one-to-one resonance occurs, the flexible beam shows different behaviors in those vibrations. For the one-to-one resonance occurring in each mode, the phase value of the planar vibration is different from that of the nonlinear vibration. This paper investigates the phase change and the phase difference between such planar and nonplanar vibrations which are caused by one-to-one resonance.

전압제어 유전체공진을 이용한 K-대역 발진기 설계에 관한 연구 (A study on the design of a K-band harmonic oscillator using voltage controlled dielectric resonance)

  • 전순익;김성철;은도현;차균현
    • 한국통신학회논문지
    • /
    • 제21권12호
    • /
    • pp.3215-3226
    • /
    • 1996
  • In this paper a K-band harmonic oscillator competitive to ordinary Push-Push type oscillators is introduced. This oscillator is composed of two-X-band dielectric resonance circuits. To favor its harmonic generation, the load effect and the bias effect are studied to allow the maximum harmonic distortion. As results, the dielectric resonated load and the class A bias are used for the 2nd harmonic generation. analytical study for modelling of voltage controlled dielectric resonator is carried out with theoretical background. The performance of the circuit is evaluated by simulation using harmonic balanced method. The novel structure has ont only a voltage tuning circuit but also an output port at fundamental frequency as the function of prescaler for phase lockede loop application on the just single oscillation structure. In experimentation, the output freqneyc of the 2nd harmonic signal is 20.5GHz and the maximum power level of output is +5.5dBm without additional post amplifiers. the harmonic oscillator exhibits -30dBc of high fundamental frequency rejection without added extra filters. The phase noise of -90dBc/Hz at 100kHz off-carrier has been achieved under free running condition, that satisfies phase noise requirement of IESS 308. The proposed oscillator may be utilized as the clean and stable fixed local oscillator in Transmit Block Upconvertor(TBU) or Low oise Block downconvertor(LNB) for K/Ka-band digital communications and satellite broadcastings.

  • PDF

Design Method for the LCL Filters of Three-phase Voltage Source PWM Rectifiers

  • Guo, Xizheng;You, Xiaojie;Li, Xinran;Hao, Ruixiang;Wang, Dewei
    • Journal of Power Electronics
    • /
    • 제12권4호
    • /
    • pp.559-566
    • /
    • 2012
  • A new design method for the LCL filters of three-phase voltage source PWM rectifiers is presented in this paper. Based on the single-phase harmonic equivalent model, the harmonic voltage of the rectifier side is calculated to design the LCL filter parameters by an iterative algorithm, in which the resonance frequency $f_{res}$ and the ratio r between the grid-side inductance and the rectifier-side inductance are selected as known constants. The design criteria and process are introduced and the influence on the design result by the value of the resonance frequency $f_{res}$, ratio r is analyzed. Finally an example (600V, 500kW) is tested by simulation and experiment to verify the validity of the new design method.