• Title/Summary/Keyword: Harmonic minimization

Search Result 29, Processing Time 0.026 seconds

A study on analysis of particle swarm optimization algorithm for the optimum design of rectenna for wireless power transmission (무선전력전송용 렉테나 최적 설계를 위한 PSO 알고리즘 분석 연구)

  • Kim, Koon-Tae;Nam, Yeong-Bin;Oh, Seung-Hun;Lee, Jung-Hyeok;Kang, Seong-In;Kim, Hyeong-Seok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.11 no.2
    • /
    • pp.34-38
    • /
    • 2012
  • In this paper, the particle swarm optimization (PSO) algorithm is adopted to design a modified ring-slot type patch rectenna with a resonance frequency of 2.45GHz. In order to accomplish minimization of dimensions and circular polarization (CP) and harmonic suppression, axial direction slits and side-cuts are added to the patch of the ring. The PSO manipulated this kind of multi-dimensional problem very well, and as a result, the designed rectenna shows a desirable performance of return loss of 21.36dB and axial ratio of 2.92dB at the frequency of 2.45GHz with compact sizing.

  • PDF

Minimization of Cell Capacitance Voltage Ripple Using Second Order Harmonic Current on Modular Multi-Level Converter (2 고조파 전류를 이용한 Modular Multi-Level Converter의 셀 캐패시터 전압맥동 최소화)

  • Jung, Sungho;Lee, Hak-Jun;Sul, Seung-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.67-68
    • /
    • 2011
  • 본 논문에서는 Modular Multi-Level Converter(MMLC)의 셀(Cell) 캐패시터(Capacitor) 전압 밸런싱에서 전압맥동 최소화 방법을 제안한다. 암(Arm) 평균 전류를 직류성분으로만 제어 할 경우 기본파 주파수와 2 고조파로 흔들리는 순시전력 항이 셀 캐패시터 전압 맥동을 만든다. 이를 억제 하기위해 암 평균 전류에 2 고조파 교류 성분을 직류성분과 함께 제어하는 방법을 제안한다. 이 방법을 통하여 전압맥동을 줄일 수 있음을 밝히고, 주입되는 2 고조파 전류의 크기와 위상각 계산 방법을 제시한다. 모의실험 결과를 통해 제안된 방법의 유효성을 검증하였다.

  • PDF

Analysis. Design and Control of Two-Level Voltage Source Converters for HVDC Systems

  • Mohan, D. Madhan;Singh, Bhim;Panigrahi, B.K.
    • Journal of Power Electronics
    • /
    • v.8 no.3
    • /
    • pp.248-258
    • /
    • 2008
  • The Voltage Source Converter (VSC) is replacing the conventional line commutated current source converters in High Voltage DC (HVDC) transmission systems. The control of a two-level voltage source converter and its design dealt with HVDC systems and various factors such as reactive power, power factor, and harmonics distortion are discussed in detail. Simulation results are given for the two-level converter and designed control is used for bidirectional power flow. The harmonics minimization is taken by extending the 6-pulse VSC to multipulse voltage source converters. The control is also tested and simulated for a 12-pulse voltage source converter to minimize the harmonic distortion in AC currents.

The Improvement of Performance for Moving Magnet type PMLSM by Permanent magnet Shape Optimization (영구자석 형상 최적화를 통한 Moving Magnet type PMLSM의 성능 향상)

  • Yoon, Kang-Jun;Lee, Dong-Yeup;Jung, Chun-Gil;Kim, Gyu-Tag
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.40-42
    • /
    • 2004
  • In this paper, optimum shape design of permanent magnet in slotted type Permanent Magnet Linear Synchronous Motor(PMLSM) is progressed for minimization of detent force owing to structure of slot-teeth and thrust ripple by harmonic magnetic flux of permanent magnet. The characteristics of thrust and detent force computed by Finite element Analysis are acquired equal effect both skewed basic model and optimum model which is optimization of permanent magnet shape.

  • PDF

Sleeper Spacing Optimization for Vibration Reduction in Rails (철로의 진동제어를 위한 침목 간격 최적설계)

  • Batjargal, Sodbilig;Abe, Kazuhisa;Koro, Kazuhiro
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.6
    • /
    • pp.569-577
    • /
    • 2012
  • In this study, a theoretical investigation of optimized sleeper spacing which can suppress resonances of a railway track is attempted. To achieve this, we introduced a minimization problem in which the objective function is given by the wave transmittance and the design variable is defined by sleeper distribution. In the analysis the rail is modeled by a Timoshenko beam and the sleeper is represented by a mass. The infinite track analysis is realized by attaching the transmitting boundaries at both ends of the finite optimization region. Through numerical analyses the sleeper spacing effective in reduction of the transmittance is discussed. Furthermore, the feasibility of the proposed method is validated in the aspect of vibration reduction through response analyses for a harmonic load.

Performance of multiple tuned mass dampers-inerters for structures under harmonic ground acceleration

  • Cao, Liyuan;Li, Chunxiang;Chen, Xu
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.49-61
    • /
    • 2020
  • This paper proposes a novel high performance vibration control device, multiple tuned mass dampers-inerters (MTMDI), to suppress the oscillatory motions of structures. The MTMDI, similar to the MTMD, involves multiple tuned mass damper-inerter (TMDI) units. In order to reveal the basic performance of the MTMDI, it is installed on a single degree-of-freedom (SDOF) structure excited by the ground acceleration, and the dynamic magnification factors (DMF) of the structure-MTMDI system are formulated. The optimization criterion is determined as the minimization of maximum values of the relative displacement's DMF for the controlled structure. Based on the particle swarm optimization (PSO) algorithm to tune the optimum parameters of the MTMDI, its performance has been investigated and evaluated in terms of control effectiveness, strokes, stiffness and damping coefficient, inerter element force, and robustness in frequency domain. Meanwhile, further comparison between the MTMDI with MTMD has been conducted. Numerical results clearly demonstrate the MTMDI outperforms the MTMD in control effectiveness and strokes of mass blocks. Additionally, in the aspects of frequency perturbations on both earthquake excitations and structures, the robustness of the MTMDI is also better than the MTMD.

Minimization of Active Power and Torque Ripple for a Doubly Fed Induction Generator in Medium Voltage Wind Power Systems under Unbalanced Grid Conditions

  • Park, Yonggyun;Han, Daesu;Suh, Yongsug;Choi, Wooyoung
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.1032-1041
    • /
    • 2013
  • This paper investigates control algorithms for a doubly fed induction generator with a back-to-back three-level neutral-point clamped voltage source converter in medium voltage wind power systems under unbalanced grid conditions. Three different control algorithms to compensate for unbalanced conditions have been investigated with respect to four performance factors; fault ride-through capability, instantaneous active power pulsation, harmonic distortions and torque pulsation. The control algorithm having a zero amplitude of torque ripple shows the most cost-effective performance concerning torque pulsation. The least active power pulsation is produced by the control algorithm that nullifies the oscillating component of the instantaneous stator active and reactive powers. A combination of these two control algorithms depending on the operating requirements and the depth of the grid unbalance presents the most optimized performance factors under generalized unbalanced operating conditions leading to high performance DFIG wind turbine systems.

Optimized Low-Switching-Loss PWM and Neutral-Point Balance Control Strategy of Three-Level NPC Inverters

  • Xu, Shi-Zhou;Wang, Chun-Jie;Han, Tian-Cheng;Li, Xue-Ping;Zhu, Xiang-Yu
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.702-713
    • /
    • 2018
  • Power loss reduction and total harmonic distortion(THD) minimization are two important goals of improving three-level inverters. In this paper, an optimized pulse width modulation (PWM) strategy that can reduce switching losses and balance the neutral point with an optional THD of three-level neutral-point-clamped inverters is proposed. An analysis of the two-level discontinuous PWM (DPWM) strategy indicates that the optimal goal of the proposed PWM strategy is to reduce switching losses to a minimum without increasing the THD compared to that of traditional SVPWMs. Thus, the analysis of the two-level DPWM strategy is introduced. Through the rational allocation of the zero vector, only two-phase switching devices are active in each sector, and their switching losses can be reduced by one-third compared with those of traditional PWM strategies. A detailed analysis of the impact of small vectors, which correspond to different zero vectors, on the neutral-point potential is conducted, and a hysteresis control method is proposed to balance the neutral point. This method is simple, does not judge the direction of midpoint currents, and can adjust the switching times of devices and the fluctuation of the neutral-point potential by changing the hysteresis loop width. Simulation and experimental results prove the effectiveness and feasibility of the proposed strategy.

The Active Noise Control in Harmonic Enclosed Sound Fields (I) Computer Simulation (조화가진된 밀폐계 음장에서의 능동소음제어 (I) 컴퓨터 시물레이션)

  • Oh, Jae-Eung;Lee, Tae-Yeon;Kim, Heung-Seob;Shin, Joon
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1054-1065
    • /
    • 1993
  • A computer simulation is performed on the effectiveness of the active minimization of harmonically excited enclosed sound fields for producing global reduction in the amplitude of the pressure fluctuations. In this study for the appreciable reductions in total time averaged acoustic potential energy, $E_{pp}$, the transducer location strategies for three dimensional active noise control is presented based on a state space modal which approximates the closed acoustic field.In this study, the above theoretical basis is used to investigate the application of active control to sound fields of low modal density. By the used of room-like 3-dimensional rectangular enclosure it is demonstrated that the reductions in $E_{pp}$ can be achieved by using a single secondary source, provided that the source is placed within the half a wavelength from the primary source and placed away from nodal line of the sound field. Concerning the reductions in $E_{pp}$ by minimzing the pressure in sound fields by the use of 3-dimensional rectangular enclosure, the effects of the number of sensors and the locations of these sensors are investigated. When a few modes dominate the response it is found that if only a limited number of sensors are located away from nodal line and located at the pressure maxima of the sound field such as at each corner of a rectangular enclosure.