• 제목/요약/키워드: Harmonic injection method

검색결과 55건 처리시간 0.026초

New Techniques for Impedance Characteristics Measurement of Islanded Microgrid based on Stability Analysis

  • Hou, Lixiang;Zhuo, Fang;Shi, Hongtao
    • Journal of Power Electronics
    • /
    • 제16권3호
    • /
    • pp.1163-1175
    • /
    • 2016
  • In recent years, microgrids have been the focus of considerable attention in distributed energy distribution. Microgrids contain a large number of power electronic devices that can potentially cause negative impedance instability. Harmonic impedance is an important tool to analyze stability and power quality of microgrids. Harmonic impedance can also be used in harmonic source localization. Precise measurement of microgrid impedance and analysis of system stability with impedances are essential to increase stability. In this study, we introduce a new square wave current injection method for impedance measurement and stability analysis. First, three stability criteria based on impedance parameters are presented. Then, we present a new impedance measurement method for microgrids based on square wave current injection. By injecting an unbalanced line-to-line current between two lines of the AC system, the method determines all impedance information in the traditional synchronous reference frame d-q model. Finally, the microgrid impedances of each part and the overall microgrid are calculated to verify the measurement results. In the experiments, a simulation model of a three-phase AC microgrid is developed using PSCAD, and the AC system harmonic impedance measuring device is developed.

6고조파 주입 PWM을 이용한 3상 승압형 컨버터 고조파저감 (Harmonic Reduction in Three-Phase Boost Converter with Six Harmonic Injected PWM)

  • 이정훈;김재문;안정준;이정호;원충연;정동효
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.327-332
    • /
    • 1999
  • In this paper, six harmonic injection PWM method for reducing total harmonic distortion in single switch three phase discontinuous conduction mode boost converter is presented. In the proposed method, periodic six harmonic voltage is injected in the control circuit to vary the duty ratio of the converter switch within a line cycle so that the fifth order harmonic of the input current is reduced. Experimental results are verified by converter operating at 400V/6kW with three phase 140V~220V input.

  • PDF

고조파 전류를 이용한 영구자석형 동기 전동기의 토크 리플 저감 (Torque Ripple Reduction for Permanent Magnet Synchronous Motor using Harmonic Current Injection)

  • 권순오;이정종;이근호;홍정표
    • 전기학회논문지
    • /
    • 제58권10호
    • /
    • pp.1930-1935
    • /
    • 2009
  • This paper deals with the torque ripple reduction of permanent magnet synchronous motor using harmonic current injection. Torque ripple of electric motor reduces system stability and performances, therefore efforts to reduce torque ripple are exerted in the design process. Torque ripple can be reduced by appropriate pole/slot combination, skew of rotor or stator, design of magnetic circuit, etc. In addition, torque ripple can be also reduced by input voltage and current, and many researches have been conducted to reduce torque ripple for six-step drive. Torque ripple reduction for current vector controlled permanent magnet synchronous motor also have been conducted and verified by investigating back emf wave form. Torque ripple reduction in this paper started from getting torque profile according to input current and electrical angle calculated by FEA, then instantaneous currents at each electrical angles for constant torque are calculated and applied to experiments. Therefore, 0% of torque ripple can be obtained theoretically with harmonic current injection. In order to maximize the effect of torque ripple reduction, a BLDC motor having high harmonic component of back emf is chosen. With sinusoidal current drive, over 100% of torque ripple is obtained initially, then 0.5 % of torque ripple is obtained by FEA using harmonic current injection. The effect is verified by experiment and the presented method can be effectively applicable to Electric Power Steering(EPS).

고조파 주입을 통한 단상 3레벨 NPC 컨버터 중성점 전압 밸런싱 연구 (A study on neutral-point voltage balance with harmonic component injection for single phase three-level NPC converter)

  • 강경필;김호성;조진태;조영훈
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 전력전자학술대회
    • /
    • pp.316-317
    • /
    • 2018
  • This paper propse the DC link capacitor voltage balancing control for three level neutral point clamped converter with harmonic component injection method. The injcetion voltage consists of harmonic component and DC link capacitor voltage difference. Theoretical analysis is provided to balance the DC link voltage, and it shows that harmonic component compensates the unbalanced condition between the capacitors. Both simulations and experiments are carried out to show that the voltage unbalance have been decreased by the proposed method.

  • PDF

Scheme for Reducing Harmonics in Output Voltage of Modular Multilevel Converters with Offset Voltage Injection

  • Anupom, Devnath;Shin, Dong-Cheol;Lee, Dong-Myung
    • Journal of Power Electronics
    • /
    • 제19권6호
    • /
    • pp.1496-1504
    • /
    • 2019
  • This paper proposes a new THD reduction algorithm for modular multilevel converters (MMCs) with offset voltage injection operated in nearest level modulation (NLM). High voltage direct current (HVDC) is actively introduced to the grid connection of offshore wind powers, and this paper deals with a voltage generation technique with an MMC for wind power generation. In the proposed method, third harmonic voltage is added for reducing the THD. The third harmonic voltage is adjusted so that each of the pole voltage magnitudes maintains a constant value with a maximum number of (N+1) levels, where N is the number of sub-modules per arm. By using the proposed method, the THD of the output voltage is mitigated without increasing the switching frequency. In addition, the proposed method has advantageous characteristics such as simple implementation. As a part of this study, this paper compares the THD results of the conventional method and the proposed method with offset voltage injection to reduce the THD. In this paper, simulations have been carried out to verify the effectiveness of the proposed scheme, and the proposed method is implemented by a HILS (Hardware in the Loop Simulation) system. The obtained results show agreement with the simulation results. It is confirmed that the new scheme achieved the maximum level output voltage and improved the THD quality.

송전계통 고조파 유입/유출 분석 (Analysis of Harmonic Incoming and Outgoing for Transmission System)

  • 왕용필;최선영;곽노홍;전영수;박상호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.561-562
    • /
    • 2007
  • A method is proposed in this paper to determine the harmonic contributions of a customer at the point of common coupling. The method can quantify customer and utility responsibilities for limit violations caused by either harmonic source changes or harmonic impedance changes. It can be implemented in current power quality monitors and digital revenue meters. The method is comparison of measurement phase angles between harmonic voltage and current. The proposed method has been applied to the test system. The study results have indicated the accuracy of harmonic injection and emission for customer and utility.

  • PDF

Torque Density Improvement of Five-Phase PMSM Drive for Electric Vehicles Applications

  • Zhao, Pinzhi;Yang, Guijie
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.401-407
    • /
    • 2011
  • In order to enhance torque density of five-phase permanent magnetic synchronous motor with third harmonic injection for electric vehicles (EVs) applications, optimum seeking method for injection ratio of third harmonic was proposed adopting theoretical derivation and finite element analysis method, under the constraint of same amplitude for current and air-gap flux. By five-dimension space vector decomposition, the mathematic model in two orthogonal space plane, $d_1-q_1$ and $d_3-q_3$, was deduced. And the corresponding dual-plane vector control method was accomplished to independently control fundamental and third harmonic currents in each vector plane. A five-phase PMSM prototype with quasi-trapezoidal flux pattern and its fivephase voltage source inverter were designed. Also, the dual-plane vector control was digitized in a single XC3S1200E FPGA. Simulation and experimental results prove that using the proposed optimum seeking method, the torque density of five-phase PMSM is enhanced by 20%, without any increase of power converter capacity, machine size and iron core saturation.

Harmonic Analysis of the Effects of Inverter Nonlinearity on the Offline Inductance Identification of PMSMs Using High Frequency Signal Injection

  • Wang, Gaolin;Wang, Ying;Ding, Li;Yang, Lei;Ni, Ronggang;Xu, Dianguo
    • Journal of Power Electronics
    • /
    • 제15권6호
    • /
    • pp.1567-1576
    • /
    • 2015
  • Offline inductance identification of a permanent magnet synchronous motor (PMSM) is essential for the design of the closed-loop controller and position observer in sensorless vector controlled drives. On the base of the offline inductance identification method combining direct current (DC) offset and high frequency (HF) voltage injection which is fulfilled at standstill, this paper investigates the inverter nonlinearity effects on the inductance identification while considering harmonics in the induced HF current. The negative effects on d-q axis inductance identifications using HF signal injection are analyzed after self-learning of the inverter nonlinearity characteristics. Then, both the voltage error and the harmonic current can be described. In addition, different cases of voltage error distribution with different injection conditions are classified. The effects of inverter nonlinearities on the offline inductance identification using HF injection are validated on a 2.2 kW interior PMSM drive.

고조파 주입에 의한 계통연계형 태양광발전시스템의 고립운전 검출 (Islanding Detection by Harmonic Current Injection Method for Utility Interactive Photovoltaic System)

  • 고재석;채영민;강병희;최규하
    • 전력전자학회논문지
    • /
    • 제8권2호
    • /
    • pp.199-210
    • /
    • 2003
  • 본 논문에서는 계통연계형 태양광발전시스템의 고립운전방지를 위한 새로운 고리운전 검출기법을 연구한다. 이를 위하여 계통연계형 태양광발전시스템 및 고립운전시의 특성에 대하여 기술하였다. 또한 고립운전의 검출특성을 향상시키기 위한 새로운 검출기법을 제시하고 해석하였으며 검출시험을 위한 부하조건 선정을 위한 부하임피던스 곡선을 해석적으로 유포하였다 ACSL 시뮬레이션 및 실험을 통하여 제시한 고립운전 검출기법 및 해석결과를 검증하였다.

Subharmonic Injection Locking 방법을 이용한 X-Band 주파수 합성기 설계 (The Design of a X-Band Frequency Synthesizer using the Subharmonic Injection Locking Method)

  • 김지혜;윤상원
    • 한국전자파학회논문지
    • /
    • 제15권2호
    • /
    • pp.152-158
    • /
    • 2004
  • Subharmonic injection locking 방식을 이용하여 디지털 위성방송 시스템의 신호원으로 사용될 수 있는 낮은 위상 잡음과 우수한 전력 효율을 갖는 X-band 주파수 합성기를 설계, 제작하였다. 주파수 합성기는 위상 고정 발진기의 역할과 동시에 고조파 발생기로 동작하는 1.75 GHz의 주 발진기(master발진기)와 10.5 GHz 부 발진기(slave 발진기)로 구성되어 있다. PLL 방법을 적용하여 구성된 1.75 GHz 주 발진기는 능동부를 형성하는 트랜지스터와 버퍼 증폭기의 역할을 하는 BJT 트랜지스터를 직렬 연결하여 사용하였는데 첫 단은 위상고정 발진기의 역할을 하고 둘째 단은 45 GHz의 차단 주파수(cutoff frequency)를 갖는BJT를 사용함으로써 고조파 발생기로 동작하게 하여 안정적으로 Injection Locking 될 수 있도록 인가될 신호인 6차 고조파의 크기를 충분히 크게 발생시키도록 하였다. 고조파 발생기로부터 발생한 6차 고조파는 뒤에 위치한 약 45 dB 이득을 갖는 증폭기로 동작하는 부 발진기에 인가되어 Injection Locking 된다. 이러한 특성을 갖는 회로 구조를 이용하여, ILO 방식을 이용함으로 얻는 간단한 회로 구조와 낮은 위상 잡음 특성은 물론 보다 우수한 전력 효율을 갖는 10.5 GHz 주파수 합성기를 설계 제작하였다. 제작된 10.5 GHz 주파수 합성기는 7.4 V/49 mA,-0.5 V/4 mA의 전력 소모와 4.53 dBm의 출력 전력, 그리고 10 kHz와 100 kHz 이격 주파수에서 각각 -95.09 dBc/Hz와-108.90 dBc/Hz의 위상 잡음 특성을 얻었다.