• Title/Summary/Keyword: Harmonic field

Search Result 451, Processing Time 0.025 seconds

Periodically Poled $KNbO_3$ Crystals for Quasi-Phase-Matching

  • Kim, Joong-Hyun;Lee, Sooseok;Yoon, Choon-Sup
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.18-18
    • /
    • 2002
  • Although it was suggested in 1962 that an efficient wavelength conversion could be achieved using ferroelectric crystals of periodic 180° domains, it was not until 1990's that quasi-phase-matching (QPM) became realized, as technology for periodic poling of LiNbO₃ crystals was readily available. Since ferroelectric domain inversion brings about change of the sign of second-order nonlinear susceptibility, periodically poled ferroelectric structures provide an ideal way of achieving QPM for second-harmonic generation and optical parametric oscillation. Periodically poled ferroelectric domains can also be utilized for optical devices, such as Brags electrooptic modulators. fabrication of stable periodic domain structures depends on a number of poling parameters of a ferroelectric crystal, such as coercive field, internal field and electrical conductivity. We present poling kinetics of KNbO₃ crystals, which involve domain nucleation and growth, backswitching, relaxation of internal field. Optimum poling conditions were established by designing a proper wave shape of external field. We demonstrate an efficient second-harmonic generation using QPM in a periodically poled KNbO₃ crystal.

  • PDF

A Study on the Hormonic Characteristics of Typical Household Loads by Field Measurements (현장 측정에 의한 가정집 부하의 고조파 특성에 관한 연구)

  • Kim, Kyung-Chul;Oh, Kyung-Hoon;Choi, Hyoung-Bumb
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.4
    • /
    • pp.100-106
    • /
    • 2008
  • Typical household load have nonlinear loads including a personal computer, video, refrigerator, microwave oven, TV, and audio set. These nonlinear loads generate harmonic currents and create distortions on the sinusoidal voltage of the power system. Harmonic field measurements have shown that the harmonic contents of a waveform varies with time. A cumulative probablistic approach is the most commonly used method to solve time varying harmonics. This paper provides in depth analysis on harmonics field measurement of the typical household loads and harmonics simulation using EDSA program for the case study.

The Effects of Moon's Uneven Mass Distribution on the Critical Inclinations of a Lunar Orbiter

  • Rahoma, Walid A.;Abd El-Salam, Fawzy A.
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.285-294
    • /
    • 2014
  • The uneven mass distribution of the Moon highly perturbs the lunar spacecrafts. This uneven mass distribution leads to peculiar dynamical features of the lunar orbiters. The critical inclination is the value of inclination which keeps the deviation of the argument of pericentre from the initial values to be zero. Considerable investigations have been performed for critical inclination when the gravity field is assumed to be symmetric around the equator, namely for oblate gravity field to which Earth's satellites are most likely to be subjected. But in the case of a lunar orbiter, the gravity field of mass distribution is rather asymmetric, that is, sectorial, and tesseral, harmonic coefficients are big enough so they can't be neglected. In the present work, the effects of the first sectorial and tesseral harmonic coefficients in addition to the first zonal harmonic coefficients on the critical inclination of a lunar artificial satellite are investigated. The study is carried out using the Hamiltonian framework. The Hamiltonian of the problem is cconstructed and the short periodic terms are eliminated using Delaunay canonical variables. Considering the above perturbations, numerical simulations for a hypothetical lunar orbiter are presented. Finally, this study reveals that the critical inclination is quite different from the critical inclination of traditional sense and/or even has multiple solutions. Consequently, different families of critical inclination are obtained and analyzed.

Torsional flexural steady state response of monosymmetric thin-walled beams under harmonic loads

  • Hjaji, Mohammed A.;Mohareb, Magdi
    • Structural Engineering and Mechanics
    • /
    • v.52 no.4
    • /
    • pp.787-813
    • /
    • 2014
  • Starting with Hamilton's variational principle, the governing field equations for the steady state response of thin-walled beams under harmonic forces are derived. The formulation captures shear deformation effects due to bending and warping, translational and rotary inertia effects and as well as torsional flexural coupling effects due to the cross section mono-symmetry. The equations of motion consist of four coupled differential equations in the unknown displacement field variables. A general closed form solution is then developed for the coupled system of equations. The solution is subsequently used to develop a family of shape functions which exactly satisfy the homogeneous form of the governing field equations. A super-convergent finite element is then formulated based on the exact shape functions. Key features of the element developed include its ability to (a) isolate the steady state response component of the response to make the solution amenable to fatigue design, (b) capture coupling effects arising as a result of section mono-symmetry, (c) eliminate spatial discretization arising in commonly used finite elements, (d) avoiding shear locking phenomena, and (e) eliminate the need for time discretization. The results based on the present solution are found to be in excellent agreement with those based on finite element solutions at a small fraction of the computational and modelling cost involved.

Field Application of New Seismic Site Characterization Using HWAW(Harmonic Wavelet Analysis of Wave) Method (HWAW(Harmonic Wavelet Analysis of Wave) 방법을 이용한 새로운 탄성파 지반조사기법의 현장 적용)

  • 박형춘;김동수;이병식
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.6
    • /
    • pp.51-59
    • /
    • 2004
  • The evaluation of shear modulus is very important in various fields of civil engineering. In this paper, the site characterization method using HWAW method is applied to determine shear wave velocity profile of two test sites in order to verify the field applicability of HWAW method. Shear wave velocity profiles by HWAW method are compared with shear wave velocity profiles by SASW test and PS-Suspension Logging test. Through field applications, it is shown that HWAW method can minimize the effect of noise and lateral non-homogeneity of the site and determine detailed local shear wave velocity profile of site.

Temperature and DC Electric Field Dependence of Second Harmonic Generation in Mg:$LiNbO_3$ (Mg:$LiNbO_3$ 에서 제2고조파발생의 온도 및 직류전장 의존도)

  • 진용성
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.1
    • /
    • pp.84-89
    • /
    • 1993
  • Spatial homogenity of Mg (4 mole %):LiNb$O_3$ is investigated by studying the characteristic of Second Harmonic Generation in Mg:LiNb$O_3$ as a function of temperature and DC Electric Field. It is found that the temperaturs at which the intensity of the second harmonic is reduced to the first zero from its maximum for the phase matching condition is shifted linearly to the strength of DC Electric field applied to optic axis of Mg:LiNb$O_3$. From these results, the electro-optic coefficient of Mg:LiNb$O_3$ is estimated to be higher than that of Congruent LiNb$O_3$ by a factor of 1.5.

  • PDF

Back EMF Design of an AFPM Motor using PCB Winding by Quasi 3D Space Harmonic Analysis Method

  • Jang, Dae-Kyu;Chang, Jung-Hwan;Jang, Gun-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.5
    • /
    • pp.730-735
    • /
    • 2012
  • This paper presents a method to design the waveform of a back electromotive force (back EMF) of an axial flux permanent magnet (AFPM) motor using printed circuit board (PCB) windings. When the magnetization distribution of permanent magnet (PM) is given, the magnetic field in the air gap region is calculated by the quasi three dimensional (3D) space harmonic analysis (SHA) method. Once the flux density distribution in the winding region is determined, the required shape of the back EMF can be obtained by adjusting the winding distribution. This can be done by modifying the distance between patterns of PCB to control the harmonics in the winding distribution. The proposed method is verified by finite element analysis (FEA) results and it shows the usefulness of the method in eliminating a specific harmonic component in the back EMF waveform of a motor.

A NONEXISTENCE THEOREM FOR STABLE EXPONENTIALLY HARMONIC MAPS

  • Koh, Sung-Eun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.32 no.2
    • /
    • pp.211-214
    • /
    • 1995
  • Let M and N be compact Riemannian manifolds and $f : M \to N$ be a smooth map. Following J. Eells, f is exponentially harmonic if it represents a critical point of the exponential energy integral $$ E(f) = \int_{M} exp(\left\$\mid$ df \right\$\mid$^2) dM $$ where $(\left\ df $\mid$\right\$\mid$^2$ is the energy density defined as $\sum_{i=1}^{m} \left\$\mid$ df(e_i) \right\$\mid$^2$, m = dimM, for orthonormal frame $e_i$ of M. The Euler- Lagrange equation of the exponential energy functional E can be written $$ exp(\left\$\mid$ df \right\$\mid$^2)(\tau(f) + df(\nabla\left\$\mid$ df \right\$\mid$^2)) = 0 $$ where $\tau(f)$ is the tension field along f. Hence, if the energy density is constant, every harmonic map is exponentially harmonic and vice versa.

  • PDF

Space Harmonic Field by Interaction of Stator and Rotor Slots (고정자 슬롯과 회전자 슬롯의 상호작용에 의한 공간 고조파)

  • Lee, Eun-Woong;Cho, Hyun-Gil;Kim, Jong-Gyeum;Jeong, Jong-Ho;Kim, Il-Jung
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.42-45
    • /
    • 1995
  • This paper describes the flux density in air gap, harmonic torques occurring by inadequate slot combination of induction motor using the fourier series. The analysis uses DFT(Discrete Fourier transform) to analyze harmonic orders of flux density. It is certified that the harmonic flux density has the same result using Fourier series and FEM.

  • PDF

Structural Analysis for Silk Hat type of the Harmonic Drive for Precision Robot (정밀 로봇용 하모닉 드라이브의 실크 햇 형상에 따른 구조해석)

  • Nam, W.K.;Ham, S.H.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.15 no.5
    • /
    • pp.61-66
    • /
    • 2011
  • Recently, the speed reducer which is applied to robot has conducted a steady development on developments in the field of robotics. Among them, Harmonic drive is a high-stiffness, precision-controlled speed reducer and has high precision, compact, light in weight and high-reduction-ratio characteristics. The feature of flexspline of Harmonic Drive are two types. One is Cup type, the other is Silk Hat type. Silk Hat type is used in case of lighter and more compact in spatial because Silk Hat Type is hollow. According to the shape of silk hat, diaphragm is fractured because stress is concentrated. In this paper, the various shapes of silk hat are suggested to improve the durability of silk hat. And in the case of each shape, a study on stress and deformation using the FEM tool was carried out on flexspline.