Browse > Article
http://dx.doi.org/10.5140/JASS.2014.31.4.285

The Effects of Moon's Uneven Mass Distribution on the Critical Inclinations of a Lunar Orbiter  

Rahoma, Walid A. (Department of Astronomy and Space Science, Faculty of Science, Cairo University)
Abd El-Salam, Fawzy A. (Department of Astronomy and Space Science, Faculty of Science, Cairo University)
Publication Information
Journal of Astronomy and Space Sciences / v.31, no.4, 2014 , pp. 285-294 More about this Journal
Abstract
The uneven mass distribution of the Moon highly perturbs the lunar spacecrafts. This uneven mass distribution leads to peculiar dynamical features of the lunar orbiters. The critical inclination is the value of inclination which keeps the deviation of the argument of pericentre from the initial values to be zero. Considerable investigations have been performed for critical inclination when the gravity field is assumed to be symmetric around the equator, namely for oblate gravity field to which Earth's satellites are most likely to be subjected. But in the case of a lunar orbiter, the gravity field of mass distribution is rather asymmetric, that is, sectorial, and tesseral, harmonic coefficients are big enough so they can't be neglected. In the present work, the effects of the first sectorial and tesseral harmonic coefficients in addition to the first zonal harmonic coefficients on the critical inclination of a lunar artificial satellite are investigated. The study is carried out using the Hamiltonian framework. The Hamiltonian of the problem is cconstructed and the short periodic terms are eliminated using Delaunay canonical variables. Considering the above perturbations, numerical simulations for a hypothetical lunar orbiter are presented. Finally, this study reveals that the critical inclination is quite different from the critical inclination of traditional sense and/or even has multiple solutions. Consequently, different families of critical inclination are obtained and analyzed.
Keywords
lunar orbiter; sectorial and tesseral harmonics; short periodic terms; canonical variables; critical inclination;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bills BG, Ferrari AJ, A harmonic analysis of lunar gravity, J. Geoph. Res., 85, 1013-1025 (1980). http://dx.doi.org/10.1029/JB085iB02p01013   DOI
2 Breiter S, Elipe A, Critical inclination in the main problem of a massive satellite, Celest. Mech. Dyn. Astr., 95, 287-297 (2006). http://dx.doi.org/10.1007/s10569-005-5911-x   DOI
3 Carvalho JP, de Moraes VR, Prado AF, Nonsphericity of the Moon and near Sunsynchronous polar lunar orbits, Math. Probl. Eng., 2009, 740460(24) (2009). http://dx.doi.org/10.1155/2009/740460   DOI
4 Carvalho JP, de Moraes VR, Prado AF, Some orbital characteristics of lunar artificial satellites, Celest. Mech. Dyn. Astr., 108, 371-388 (2010). http://dx.doi.org/10.1007/s10569-010-9310-6   DOI
5 Carvalho JP, de Moraes VR, Prado AF, Planetary Satellite Orbiters: Applications for the Moon, Math. Probl. Eng., 2011, 87478(19) (2011). http://dx.doi.org/10.1155/2011/187478   DOI
6 Coffey SL, Deprit A, Miller BR, The critical inclination in artificial satellite theory, Celestial Mech, 39, 365-406 (1986). http://dx.doi.org/10.1007/BF01230486   DOI
7 Coffey SL, Deprit A, Deprit E, Frozen orbits for satellites close to an Earth-like planet, Celest. Mech. Dyn. Astr., 59, 37-72 (1994). http://dx.doi.org/10.1007/BF00691970   DOI
8 Delhaise F, Morbidelli A, Luni-solar effects of geosynchronous orbits at the critical inclination, Celest. Mech. Dyn. Astr., 57, 155-173 (1993). http://dx.doi.org/10.1007/BF00692471   DOI
9 Abd El-Salam FA, Ahmed MK, Canonical solution of the critical inclination problem taking into account PNcorrections, Appl. Math. Comput., 161, 825-841 (2005a). http://dx.doi.org/10.1016/j.amc.2003.12.042   DOI
10 Abd El-Salam FA, Ahmed MK, Radwan M, The Post-Newtonian Effects in the Critical Inclination Problem in Artificial Satellite Theory, Appl. Math. Comput., 161, 813-823 (2005b). http://dx.doi.org/10.1016/j.amc.2003.12.041.   DOI
11 De Saedeleer B, Analytical theory of a lunar artificial satellite with third body perturbations, Celest. Mech. Dyn. Astr., 95, 407-423 (2006). http://dx.doi.org/10.1007/s10569-006-9029-6   DOI
12 De Saedeleer B, Henrard J, The combined effect of and on the critical inclination of a lunar orbiter, Adv. Space Res., 37, 80-87 (2006). http://dx.doi.org/10.1016/j.asr.2005.06.052   DOI
13 d'Avanzo P, Teofilatto P, Ulivieri C, Long-term effects on lunar orbiter, Acta Astronaut., 40, 13-20 (1997). http://dx.doi.org/10.1016/S0094-5765(97)00010-6   DOI
14 Elipe A, Lara M, Frozen orbits about Moon. J. Guid. Control Dynam., 26, 238-243 (2003). http://dx.doi.org/10.2514/2.5064   DOI
15 El-Saftawy MI, MSc thesis (Univ. Cairo, Egypt 1991).
16 Kaula, WM, Introduction to Satellite Geodesy (Blaisdell Publ. Co., Waltham, Mass 1966).
17 Folta D, Quinn D, Lunar Frozen Orbits, in AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Keystone, CO, 21-24 Aug 2006.
18 Giacaglia GEO, Murphy JP, Felsentreger TL, A Semi-analytic Theory for the Motion of a Lunar Satellite, Celestial Mech., 3, 3-66 (1970). http://dx.doi.org/10.1007/BF01230432   DOI
19 Yi HJ, Choi KH, The Characteristics of Critical Inclination of Satellite Orbit, JASS, 10, 17-24, (1993).
20 Konopliv AS, Asmar SW, Carranza E, Sjogren WL, Yuan DN, Recent Gravity Models as a Result of the Lunar Prospector Mission, Icarus, 150, 1-18 ( 2001) http://dx.doi.org/10.1006/icar.2000.6573.   DOI   ScienceOn
21 Liu X, Baoyin H, Ma X, Extension of the critical inclination, Astrophys Space Sci, 334, 115-124 (2011). http://dx.doi.org/10.1007/s10509-011-0685-y.   DOI
22 Melosh HJ, Freed AM, Johnson BC, Blair DM, Andrews-Hanna JC, et al., The origin of Lunar Mascon Basins, Science, 340, 1552-1555 (2013). http://dx.doi.org/10.1126/science.1235768   DOI
23 Park SY, Junkins JL, Orbital Mission Analysis for a Lunar Mapping Satellite, J. Astronaut. Sci., 43, 207-217 (1995).
24 Radwan M, Analytical Approach to the Motion of a Lunar Artificial Satellite, Astrophys. Space Sci., 283, 137-154 (2003). http://10.1023/A:1021312012035   DOI
25 Rahoma WA, Khattab EH, Abd El-Salam FA, Relativistic and the first sectorial harmonics corrections in the critical inclination, Astrophys. Space Sci., 351, 113-117 (2014). http://dx.doi.org/10.1007/s10509-014-1811-4   DOI
26 Tzirti S, Tsiganis K, Varvoglis H, Quasi-critical orbits for artificial lunar satellites, Celest. Mech. Dyn. Astr., 104, 227-239 (2009). http://dx.doi.org/10.1007/s10569-009-9207-4   DOI