• 제목/요약/키워드: Harmonic current compensation

검색결과 198건 처리시간 0.024초

Flyback AC-DC Converter with Low THD Based on Primary-Side Control

  • Chang, Changyuan;He, Luyang;Cao, Zixuan;Zhao, Dadi
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1642-1649
    • /
    • 2018
  • A single-stage flyback LED AC-DC converter based on primary-side control under constant current mode is proposed in this study. The proposed converter features low total harmonic distortion (THD) and high power factor (PF). It also consists of a zero-crossing distortion compensation circuit and a variable duty ratio control compensation circuit to deal with the line current distortions caused by fixed duty ratio control. The system model and layout are built in Simplis and Cadence, respectively. The feasibility and performance of the proposed circuit is verified by designing and fabricating an IC controller in the HHNEC $0.35{\mu}m$ 5 V/40 V HVCMOS process. Experimental results show that the PF can reach a level in the range of 0.985-0.9965. Moreover, the average THD of the entire system is approximately 10%, with the minimum being 6.305%, as the input line voltage changes from 85 VAC to 265 VAC.

전압형 PWM 인버터에서의 새로운 데드 타임 보상 기법 (New Dead Time Compensation Method in Voltage-Fed PWM Inverter)

  • 류호선;김봉석;이주현;임익헌;황선환;김장목
    • 전력전자학회논문지
    • /
    • 제11권5호
    • /
    • pp.395-403
    • /
    • 2006
  • 본 논문에서는 전압형 PWM 인버터에서의 새로운 데드 타임 보상 기법을 제안하였다. 전압형 PMW 인버터의 경우 데드 타임 영향과 스위칭 소자의 비선형적인 특성에 의해 전압 왜곡이 발생한다. 특히, 전압 왜곡은 정지 좌표계 상전류에 5차와 7차, 그리고 동기 좌표계 상전류에는 6차 고조파를 발생시킨다. 그 결과 d축 동기 PI 전류 제어기의 적분기 출력은 인버터 기본파 주파수의 6배에 해당하는 맥동을 가지고 있다. 본 논문에서는 d축 전류 제어기의 적분기 출력 신호를 데드 타임 보상을 위한 제어 신호로 사용하였다. 제안된 방법은 실험과 시뮬레이션을 통해 타당성을 검증하였다.

Wind Energy Interface to Grid with Load Compensation by Diode Clamped Multilevel Inverters

  • Samuel, Paulson;Naik, M. Kishore;Gupta, Rajesh;Chandra, Dinesh
    • Journal of Power Electronics
    • /
    • 제14권2호
    • /
    • pp.271-281
    • /
    • 2014
  • Fluctuating wind conditions necessitate the use of a variable speed wind turbine (VSWT) with a AC/DC/AC converter scheme in order to harvest the maximum power from the wind and to decouple the synchronous generator voltage and frequency from the grid voltage and frequency. In this paper, a combination of a three phase diode bridge rectifier (DBR) and a modified topology of the diode clamped multilevel inverter (DCMLI) has been considered as an AC/DC/AC converter. A control strategy has been proposed for the DCMLI to achieve the objective of grid interface of a wind power system together with local load compensation. A novel fixed frequency current control method is proposed for the DCMLI based on the level shifted multi carrier PWM for achieving the required control objectives with equal and uniform switching frequency operation for better control and thermal management with the modified DCMLI. The condition of the controller gain is derived to ensure the operation of the DCMLI at the fixed frequency of the carrier. The converter current injected into the distribution grid is controlled in accordance with the wind power availability. In addition, load compensation is performed as an added facility in order to free the source currents being fed from the grid of harmonic distortion, unbalance and a low power factor even though the load may be unbalanced, non-linear and of a poor power factor. The results are validated using PSCAD/EMTDC simulation studies.

전류제어형 PWM 컨버터에 의한 순시 무효전력 보상장치 (Instantaneous Reactive Power Compensator using Current Controlled PWM Converter)

  • 최재호;김상훈;박민호
    • 대한전기학회논문지
    • /
    • 제38권7호
    • /
    • pp.539-548
    • /
    • 1989
  • 본 논문에서는 싸이리스터 부하에서 발생하는 무효전력과 고조파를 보상하기 위한 순시무효전력 보상장치에 관하여 기술하였다. 저자는 기본파 위상 지연과 고조파 전류외형에 기인하는 순시무효전력을 새로이 정의하고 순시전력흐름의 관점에서 그 물리적 의미를 고찰하였다. 순시전압 및 순시전류의 궤환에 의해 순시무효전력을 계산하고, 이를 부하와 병렬로 연결된 전류제어형 PWM컨버터에 의해 보상하였다. PWM컨버터는 전류오차 백터제어방식에 의한 전류제어 PWM 기법을 사용함으로써 우수한 전류제어특성을 실현할 수 있었다. 시뮬레이션과 실험을 통하여 정상상태 및 과도상태에서의 탁월한 보상특성이 입증되었다.

Research on the Inter-harmonics Equivalent Impedance of Series Hybrid Active Power Filter

  • Jian-gong, Zhang;Jian-ben, Liu;Shao-jun, Dai;Qiao-fu, Chen;Jun-jia, He
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권5호
    • /
    • pp.2062-2069
    • /
    • 2015
  • In the series hybrid active power filter (SHAPF) with magnetic flux compensation (MFC), the system current oscillate in the experimental results when adding the same phase harmonic current command in current control block. This condition endangers the security of the SHAPF. Taking the digit period average arithmetic as example, this paper explains the inter-harmonics current oscillation in the experiment. The conclusion is that the SHAPF is unstable to the inter-harmonics current in theory. Limited by the capacity of the inverter, the system current and the inverter output current do not increase to infinite. At last, some methods are proposed to solve this problem. From the practical viewpoint, the voltage feed-forward control is easy to achieve. It can suppress the current oscillation problems, and also improve the filtering effect. The feasibility of the methods is validated by both the emulation and experiment results.

Current Mode Integrated Control Technique for Z-Source Inverter Fed Induction Motor Drives

  • Thangaprakash, Sengodan;Krishnan, Ammasai
    • Journal of Power Electronics
    • /
    • 제10권3호
    • /
    • pp.285-292
    • /
    • 2010
  • This paper presents a current mode integrated control technique (CM-ICT) using a modified voltage space vector modulation (MSVM) for Z-source inverter (ZSI) fed induction motor drives. MSVM provides a better DC voltage boost in the dc-link, a wide range of AC output voltage controllability and a better line harmonic profile. In a voltage mode ICT (VM-ICT), the outer voltage feedback loop alone is designed and it enforces the desired line voltage to the motor drive. An integrated control technique (ICT), with an inner current feedback loop is proposed in this paper for the purpose of line current limiting and soft operation of the drive. The current command generated by the PI controller and limiter in the outer voltage feedback loop, is compared with the actual line current, and the error is processed through the PI controller and a limiter. This limiter ensures that, the voltage control signal to the Z-source inverter is constrained to a safe level. The rise and fall of the control signal voltage are made to be gradual, so as to protect the induction motor drive and the Z-source inverter from transients. The single stage controller arrangement of the proposed CM-ICT offers easier compensation. Analysis, Matlab/Simulink simulations, and experimental results have been presented to validate the proposed technique.

태양전지 출력제어를 위한 DC-DC 컨버터의 해석 및 설계 (Analysis and design DC-DC converter for solar cell array output control)

  • 고재석
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2000년도 전력전자학술대회 논문집
    • /
    • pp.665-669
    • /
    • 2000
  • Recently the problem of energy branch become worse increasingly. Therefore many researches about new energy source are processing in several places around are processing in several places around the world. Especially solar energy has many advantages like as purity and infinity. Photovoltaic(PV) system can be classified into two types : One is stand alone type and the other is utility interactive one. Utility interactive type PV system need some technology that Maximum peak power tracking(MPPT) and Anti-islanding and Active Power filter(APF). For APF operation dc-link voltage should be high to supply sufficient output current which needed for harmonic current compensation so usually DC-DC converter is used for boost. In this paper DC-DC converter for PV system and controller for dc-link voltage control are analyzed and designed.

  • PDF

Battery Energy Storage System Based Controller for a Wind Turbine Driven Isolated Asynchronous Generator

  • Singh, Bhim;Kasal, Gaurav Kumar
    • Journal of Power Electronics
    • /
    • 제8권1호
    • /
    • pp.81-90
    • /
    • 2008
  • This paper presents an investigation of a voltage and frequency controller for an isolated asynchronous generator (IAG) driven. by a wind turbine and supplying 3-phase 4-wire loads to the isolated areas where a grid is not accessible. The control strategy is based on the indirect current control of the VSC (voltage source converter) using the frequency PI controller. The proposed controller consists of three single-phase IGBT (Insulated Gate Bipolar Junction Transistor) based VSC, which are connected to each phase of the IAG through three single phase transformers and a battery at their DC link. The controller has the capability of controlling reactive and active powers to regulate the magnitude and frequency of the generated voltage, harmonic elimination, load balancing and neutral current compensation. The proposed isolated system is modeled and simulated in MATLAB using Simulink and PSB (Power System Block-set) toolboxes to verify the performance of the controller.

전압형 무효전력 보상장치의 선형제어방식에 대한 연구 (A Study on Linear Control Method of Voltage Type Reactive Power Compensator)

  • 정승기;최재호;최규하
    • 대한전기학회논문지
    • /
    • 제40권8호
    • /
    • pp.757-764
    • /
    • 1991
  • This paper proposes a novel control method of voltage type current-controlled reactive/harmonic compensator. The proposed method does not rely on the explicit computation of load power, but indirectly controls the compensation current by regulating dc link voltage of the converter. It is shown that the system can be modeled as a simple linear system that facilitates an analytical approach to the system characteristics. With the model, the effects of the controller gains on the dynamic and steady state response of the system are investigated. Experimental results show that the proposed control method works well in spite of the simplicity of control circuitry.

  • PDF

이득 감쇠 및 위상 지연 보상 LPF를 이용한 PMSM의 전류 제어 성능 개선 (Performance Improvement of PMSM Current Control using Gain Attenuation and Phase Delay Compensated LPF)

  • 김민주;최진철;이우택
    • 한국자동차공학회논문집
    • /
    • 제22권2호
    • /
    • pp.107-114
    • /
    • 2014
  • This paper applies a compensated low pass filter (LPF) to current measurements for permanent magnet synchronous motor (PMSM) drives. The noise limits the bandwidth of current controllers and has more adverse influences on control performances under the light load condition because of the low signal-to-noise ratio. In order to eliminate the noise sensitivity, this paper proposes a digital LPF with a compensator of gain attenuation and phase delay which are unacceptable in current information for PMSM drives. Characteristics of the proposed LPF are analyzed in comparison with the general LPFs. The compensated LPF is basically designed by the orthogonal property of the measured currents in the ${\alpha}{\beta}$ stationary reference frame. In addition, an implementation issue of the proposed method is discussed. Experimental results using the proposed method show improvements of the current control performance from two perspectives, rapid step responses and reductions of harmonic distortion.