• Title/Summary/Keyword: Harmonic Excitation

Search Result 291, Processing Time 0.03 seconds

Analysis of Acoustic Excitation Effect on Lean Blowoff in Premixed Bluff Body Flames (예혼합 보염기 화염의 희박 화염 날림에 음향 가진이 미치는 영향에 관한 연구)

  • Jeong, Chanyeong;Hwang, Jeongjae;Yoon, Jisu;Kim, Taesung;Shin, Jeoik;Yoon, Youngbin
    • 한국연소학회:학술대회논문집
    • /
    • 2014.11a
    • /
    • pp.149-151
    • /
    • 2014
  • The blowoff phenomenon was experimentally investigated in a ducted combustor according to the acoustic excitation. The blowoff equivalence ratio rapidly increases at specific acoustic excitation frequencies. A resonance phenomenon occurs when the excitation frequency approaches the harmonic frequency of the combustor. The resonance increases the velocity fluctuation in the combustor and the infiltration velocity of the unburned gas in the shear layer. Consequently, the mixture velocity exceeds the burning velocity and the blowoff occurs at the higher equivalence ratio.

  • PDF

Extraction of Bridge Flutter Derivatives by a Forced Excitation (강제 가진에 의한 교량 플러터계수 추출)

  • Lee, Seung-Ho;Kwon, Soon-Duck
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.575-582
    • /
    • 2009
  • This study presents the vibration excitation system to extract the aerodynamic stability derivatives which is generally called as flutter derivatives in civil engineering. The system consists of the excitation part to give a forced harmonic motion to the model and the sensing part to measure the aerodynamic forces as well as inertia forces acting on a bridge model. A data processing algorithm for extracting the flutter derivatives from the measured forces is also presented. From the wind tunnel tests, verification of present system was done by comparing the measured and analytical results for rectangular shaped model. The effects of excitation frequencies and amplitudes on flutter derivatives are discussed. Five kinds of actual bridge model were presented from the wind tunnel.

Comparison of Flywheel Systems for Harmonic Compensation Based on Wound/Squirrel-Cage Rotor Type Induction Motors

  • Kim, Yoon-Ho;Jeong, Yeon-Suk;Jeong, Yeon-Suk
    • Journal of Power Electronics
    • /
    • v.1 no.2
    • /
    • pp.127-132
    • /
    • 2001
  • This paper describes two different systems which can compensate harmonic currents generated in a power system. As non-linear loads increase gradually in industry fields, harmonic current generated in the electric power network system also increases. Harmonic current makes a power network current distorted and generates heat, vibration and noise in the power machinery. Many approaches have been applied to compensate harmonic currents generated in the power system. Among various approaches, in this paper, two kinds are compared and evaluated. They are flywheel compensators bases on secondary excitation of WRIM(wounded rotor induction motor) and SCIM(squirrel cage induction motor). Both systems have a common structure. They use a flywheel as an energy storage device and use PWM inverters. The main differences are the size and rating of the converter used.

  • PDF

Harmonic and Power Factor Compensation Using WRIM Based on Sliding Mode Controller (슬라이딩 모드제어기와 권선형 유도전동기를 이용한 고조파 및 역률보상)

  • Kim Seung-Mo;Kim Yoon-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2002.11a
    • /
    • pp.7-11
    • /
    • 2002
  • This paper proposes an APF(Active Power Filter) with WRIM(Wounded Rotor Induction Motor) controlled by sliding mode which can compensate harmonic currents generated in a power system. As non-linear loads increase gradually in industry fields, harmonic current generated In the electric power network system also increases. Harmonic current makes a power network current distorted and generates heat, vibration and noise In the power machinery, Many approaches have been applied to compensate harmonic currents generated in the power system. Among various control strategy, in this paper, a sliding mode controlled systems is designed and evaluated. This is a flywheel compensator based on secondary excitation of WRIM(wounded rotor induction motor) with SMC(sliding mode controller). The proposed system uses a flywheel as an energy storage device. The designed control scheme is verified through simulation.

  • PDF

Technical Trend on Excitation Capacitors on Harmonic Amplification of Wind Induction Generator (풍력 유도발전기의 여자 축전지에 따른 고주파 증폭에 관한 기술 동향)

  • Rho, Sang-Pil;Park, Jung-Seok;Lee, Young-Gil;Choi, Yong-Sung;Lee, Kyung-Sup
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.1976-1977
    • /
    • 2007
  • This paper introduce the electrical quantities of a three-phase-connected wind induction generator (WIG) under sudden connection of static loads. An intelligent power-system recorder/monitor is employed to measure threephase voltages and currents of the studied system at WIG's terminals and load's terminals for 5 minutes. A laboratory 300 W wound-rotor induction machine driven by a blushless DC motor is utilized as the studied WIG. Since the generated harmonic currents are randomly varied, total harmonic distortion (THD) of current using cumulative probability density function is employed to determine the penetration of harmonic distortion. The results show that the harmonic currents generated by the studied WIG may be severely amplified to a high level by the connected self-excited capacitance at the stator's terminals.

  • PDF

Methods to Obtain Approximate Responses of a Non-Linear Vibration Isolation System (비선형 진동절연 시스템의 근사적 응답을 구하는 방법)

  • Lee, Gun-Myung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.23-28
    • /
    • 2020
  • A non-linear vibration isolation system composed of a non-linear spring and a linear damper was presented in a previous study. The advantage of the proposed isolator is the simple structure of the system. When the base of the isolator is harmonically excited, the response component of the mass at the excitation frequency was approximated using three different methods: linear approximation, harmonic balance, and higher-order frequency response functions (FRFs). The method using higher-order FRFs produces significantly more accurate results compared with the other methods. The error between the exact and approximate responses does not increase monotonously with the excitation amplitude and is less than 2%.

Phase Change for One to One Resonance of Nonlinear Cantilever Beam (비선형 외팔보의 일대일 공진에서의 위상변화)

  • Kim, Myoung-Gu;Pak, Chul-Hui;Cho, Chong-Du;Cho, Ho-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.703-708
    • /
    • 2006
  • The cantilever beam with nonlinearity has many dynamic characteristics of nonlinear vibration. Nonlinear terms of a flexible cantilever beam include inertia, spring, damping, and warping. When the beam is given basic harmonic excitation, it shows planar and nonplanar vibrations due to one-to-one resonance. And when the one-to-one resonance occurs, the flexible beam shows different behaviors in those vibrations. For the one-to-one resonance occurring in each mode, the phase value of the planar vibration is different from that of the nonlinear vibration. This paper investigates the phase change and the phase difference between such planar and nonplanar vibrations which are caused by one-to-one resonance.

  • PDF

Enhaced 2.4 kbps Harmonic Stochastic Excitation Coding for Time/Frequency Transitional Speech (시간/주파수 전이신호를 위한 향상된 2.4 kbps 하모닉 스토케스틱 여기 음성 부호화 방법)

  • 김종학;이인성
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.7
    • /
    • pp.53-58
    • /
    • 2000
  • 본 논문은 주파수 전이신호와 시간 전이 신호에 대해서 고조파 잡음 여기 방법과 시간 분리 여기 방법을 적용한 2.4 kbps 음성부호화 방법을 제안한다. 혼합 여기 부호화 방법은 주기 신호와 비 주기 신호를 효과적으로 표현하기 위해 하모닉 잡음 모델을 사용한다. 혼합신호에 대한 잡음 성분은 캡스트럴 분석 방법을 사용함으로써 추출되고, AR (Autoregressive Model) 모델에 의해 표현된다. 시간 전이구간 신호에서의 모호한 음성을 효과적으로 제거하기 위한 또 다른 방법이 제안된다. 제안된 시간 분리 방법은 시간 에너지 변화정도를 관찰함으로써 전이 시점을 감지하고 다른 시간 길이를 가지는 두 블록으로 분리하여 분석한다. 시간 분리 방법은 분석을 위한 비대칭 윈도우와 합성에서의 위상 합성 방법을 포함한다. 제안된 방법을 사용한 2.4 kbps 음성부호화 방법은 주관적 음질 평가에서 전이구간에서의 지각적 음질의 향상을 보여주었으며, 원본 음성 스펙트럼과의 고조파 비 매칭에 의한 윙윙거리는 기계적인 잡음을 감소시킨다.

  • PDF

A Modified Current Differential Relay for Transformer Protection (변압기 보호용 수정 전류차동 계전방식)

  • 강용철;김은수;원성호
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.2
    • /
    • pp.80-86
    • /
    • 2004
  • During magnetic inrush or over-excitation, saturation of the core in a transformer draws a large exciting current, which can cause mal-operation of a differential relay. This paper proposes a modified current differential relay for transformer protection. The relay calculates core-loss current from the induced voltage and the core-loss resistance; the relay calculates the magnetizing current from the core flux and the magnetization curve. Finally, the relay obtains the modified differential current by subtracting the core-loss and the magnetizing currents from the conventional differential current. Comparison study with the conventional differential relay with harmonic blocking is also shown. The proposed technique not only discriminates magnetic inrush and over-excitation from an internal fault, but also improves the speed of the conventional relay.

Non-linear Phenomenon in the Response of Circle Cantilever Beam (원형 외팔보의 응답에서의 비선형 현상)

  • Kim, Myung-Gu;Lee, Heung-Shik;Cho, Chong-Du
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.4 s.97
    • /
    • pp.445-451
    • /
    • 2005
  • This paper is the result of a experimental study about non-linear one to one modal coupling of a flexible circular cantilever beam which was transversely excited with harmonic excitation. It was proved that 2 order jumping in out of plane was caused by jump phenomenon in in-plane of flexible circular cantilever beam, because of non-linear coupling. In addition, cantilever beam showed hardening spring characteristics in in-plane and softening spring characteristics in out-of-plane.