• 제목/요약/키워드: Hardware-based neuromorphic computing

검색결과 7건 처리시간 0.021초

Tunneling Field-Effect Transistors for Neuromorphic Applications

  • Lee, Jang Woo;Woo, Jae Seung;Choi, Woo Young
    • Journal of Semiconductor Engineering
    • /
    • 제2권3호
    • /
    • pp.142-153
    • /
    • 2021
  • Recent research on synaptic devices has been reviewed from the perspective of hardware-based neuromorphic computing. In addition, the backgrounds of neuromorphic computing and two training methods for hardware-based neuromorphic computing are described in detail. Moreover, two types of memristor- and CMOS-based synaptic devices were compared in terms of both the required performance metrics and low-power applications. Based on a review of recent studies, additional power-scalable synaptic devices such as tunnel field-effect transistors are suggested for a plausible candidate for neuromorphic applications.

뉴로모픽 포토닉스 기술 동향 (Trends in Neuromorphic Photonics Technology)

  • 권용환;김기수;백용순
    • 전자통신동향분석
    • /
    • 제35권4호
    • /
    • pp.34-41
    • /
    • 2020
  • The existing Von Neumann architecture places limits to data processing in AI, a booming technology. To address this issue, research is being conducted on computing architectures and artificial neural networks that simulate neurons and synapses, which are the hardware of the human brain. With high-speed, high-throughput data communication infrastructures, photonic solutions today are a mature industrial reality. In particular, due to the recent outstanding achievements of artificial neural networks, there is considerable interest in improving their speed and energy efficiency by exploiting photonic-based neuromorphic hardware instead of electronic-based hardware. This paper covers recent photonic neuromorphic studies and a classification of existing solutions (categorized into multilayer perceptrons, convolutional neural networks, spiking neural networks, and reservoir computing).

AI 컴포넌트 추상화 모델 기반 자율형 IoT 통합개발환경 구현 (Implementation of Autonomous IoT Integrated Development Environment based on AI Component Abstract Model)

  • 김서연;윤영선;은성배;차신;정진만
    • 한국인터넷방송통신학회논문지
    • /
    • 제21권5호
    • /
    • pp.71-77
    • /
    • 2021
  • 최근 이질적인 하드웨어 특성을 고려한 IoT 응용 지원 프레임워크의 효율적인 프로그램 개발이 요구되고 있다. 또한, 인간의 뇌를 모사하여 스스로 학습 및 자율적 컴퓨팅이 가능한 뉴로모픽 아키텍처의 발전으로 하드웨어 지원의 범위가 넓어지고 있다. 하지만 기존 대부분의 IoT 통합개발환경에서는 AI(Artificial Intelligence) 기능을 지원하거나 뉴로모픽 아키텍처와 같은 다양한 하드웨어와 결합된 서비스 지원이 어렵다. 본 논문에서는 2세대 인공 신경망 및 3세대 스파이킹 신경망 모델을 모두 지원하는 AI 컴포넌트 추상화 모델을 설계하고 제안 모델 기반의 자율형 IoT 통합개발환경을 구현하였다. IoT 개발자는 AI 및 스파이킹 신경망에 대한 지식이 없어도 제안 기법을 통해 자동으로 AI 컴포넌트를 생성할 수 있으며 런타임에 따라 코드 변환이 유연하여 개발 생산성이 높다. 제안 기법의 실험을 진행하여 가상 컴포넌트 계층으로 인한 변환 지연시간이 발생할 수 있으나 차이가 크지 않음을 확인하였다.

Spiking Neural Networks(SNN)를 위한 컴파일러 구조와 매핑 알고리즘 성능 분석 (A Structure of Spiking Neural Networks(SNN) Compiler and a performance analysis of mapping algorithm)

  • 김용주;김태호
    • 문화기술의 융합
    • /
    • 제8권5호
    • /
    • pp.613-618
    • /
    • 2022
  • SNN(Spiking Neural Networks) 기반의 인공지능 연구는 현재 유행하는 DNN(Deep Neural Networks) 기반의 인공지능의 한계를 극복할 수 있는 차세대 인공지능으로서 주목받고 있다. 본 논문에서는 SNN 형태의 입력을 뉴로모픽 컴퓨팅 시스템에서 구동시킬 수 있는 시스템 SW인 SNN 컴파일러의 구조에 대하여 설명한다. 또한 컴파일러 구현을 위하여 사용된 알고리즘을 소개하고 매핑 알고리즘의 동작 형태에 따라 뉴로모픽 컴퓨팅 시스템에서 수행시간이 어떻게 달라지는지에 대한 실험결과를 제시한다. 본문에서 제안한 매핑 알고리즘은 랜덤 매핑에 비해 최대 3.96배의 수행속도 향상이 있었다. 해당 연구 결과를 통해 SNN들을 다양한 뉴로모픽 하드웨어에서 적용할 수 있을 것이다.

뉴로모픽 시스템용 시냅스 트랜지스터의 최근 연구 동향

  • 남재현;장혜연;김태현;조병진
    • 세라미스트
    • /
    • 제21권2호
    • /
    • pp.4-18
    • /
    • 2018
  • Lastly, neuromorphic computing chip has been extensively studied as the technology that directly mimics efficient calculation algorithm of human brain, enabling a next-generation intelligent hardware system with high speed and low power consumption. Three-terminal based synaptic transistor has relatively low integration density compared to the two-terminal type memristor, while its power consumption can be realized as being so low and its spike plasticity from synapse can be reliably implemented. Also, the strong electrical interaction between two or more synaptic spikes offers the advantage of more precise control of synaptic weights. In this review paper, the results of synaptic transistor mimicking synaptic behavior of the brain are classified according to the channel material, in order of silicon, organic semiconductor, oxide semiconductor, 1D CNT(carbon nanotube) and 2D van der Waals atomic layer present. At the same time, key technologies related to dielectrics and electrolytes introduced to express hysteresis and plasticity are discussed. In addition, we compared the essential electrical characteristics (EPSC, IPSC, PPF, STM, LTM, and STDP) required to implement synaptic transistors in common and the power consumption required for unit synapse operation. Generally, synaptic devices should be integrated with other peripheral circuits such as neurons. Demonstration of this neuromorphic system level needs the linearity of synapse resistance change, the symmetry between potentiation and depression, and multi-level resistance states. Finally, in order to be used as a practical neuromorphic applications, the long-term stability and reliability of the synapse device have to be essentially secured through the retention and the endurance cycling test related to the long-term memory characteristics.

비동기 설계 방식기반의 저전력 뉴로모픽 하드웨어의 설계 및 구현 (Low Power Neuromorphic Hardware Design and Implementation Based on Asynchronous Design Methodology)

  • 이진경;김경기
    • 센서학회지
    • /
    • 제29권1호
    • /
    • pp.68-73
    • /
    • 2020
  • This paper proposes an asynchronous circuit design methodology using a new Single Gate Sleep Convention Logic (SG-SCL) with advantages such as low area overhead, low power consumption compared with the conventional null convention logic (NCL) methodologies. The delay-insensitive NCL asynchronous circuits consist of dual-rail structures using {DATA0, DATA1, NULL} encoding which carry a significant area overhead by comparison with single-rail structures. The area overhead can lead to high power consumption. In this paper, the proposed single gate SCL deploys a power gating structure for a new {DATA, SLEEP} encoding to achieve low area overhead and low power consumption maintaining high performance during DATA cycle. In this paper, the proposed methodology has been evaluated by a liquid state machine (LSM) for pattern and digit recognition using FPGA and a 0.18 ㎛ CMOS technology with a supply voltage of 1.8 V. the LSM is a neural network (NN) algorithm similar to a spiking neural network (SNN). The experimental results show that the proposed SG-SCL LSM reduced power consumption by 10% compared to the conventional LSM.

Volatile Memristor-Based Artificial Spiking Neurons for Bioinspired Computing

  • Yoon, Soon Joo;Lee, Yoon Kyeung
    • 한국전기전자재료학회논문지
    • /
    • 제35권4호
    • /
    • pp.311-321
    • /
    • 2022
  • The report reviews recent research efforts in demonstrating a computing system whose operation principle mimics the dynamics of biological neurons. The temporal variation of the membrane potential of neurons is one of the key features that contribute to the information processing in the brain. We first summarize the neuron models that explain the experimentally observed change in the membrane potential. The function of ion channels is briefly introduced to understand such change from the molecular viewpoint. Dedicated circuits that can simulate the neuronal dynamics have been developed to reproduce the charging and discharging dynamics of neurons depending on the input ionic current from presynaptic neurons. Key elements include volatile memristors that can undergo volatile resistance switching depending on the voltage bias. This behavior called the threshold switching has been utilized to reproduce the spikes observed in the biological neurons. Various types of threshold switch have been applied in a different configuration in the hardware demonstration of neurons. Recent studies revealed that the memristor-based circuits could provide energy and space efficient options for the demonstration of neurons using the innate physical properties of materials compared to the options demonstrated with the conventional complementary metal-oxide-semiconductors (CMOS).