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Abstract: The report reviews recent research efforts in demonstrating a computing system whose operation principle mimics 

the dynamics of biological neurons. The temporal variation of the membrane potential of neurons is one of the key features that 

contribute to the information processing in the brain. We first summarize the neuron models that explain the experimentally 

observed change in the membrane potential. The function of ion channels is briefly introduced to understand such change from 

the molecular viewpoint. Dedicated circuits that can simulate the neuronal dynamics have been developed to reproduce the 

charging and discharging dynamics of neurons depending on the input ionic current from presynaptic neurons. Key elements 

include volatile memristors that can undergo volatile resistance switching depending on the voltage bias. This behavior called 

the threshold switching has been utilized to reproduce the spikes observed in the biological neurons. Various types of threshold 

switch have been applied in a different configuration in the hardware demonstration of neurons. Recent studies revealed that the 

memristor-based circuits could provide energy and space efficient options for the demonstration of neurons using the innate 

physical properties of materials compared to the options demonstrated with the conventional complementary metal-oxide-

semiconductors (CMOS). 
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1. INTRODUCTION 

As the amount of data subject to processing has increased 

rapidly due to ubiquitous electronic devices and sensors for 

Internet of Things (IOT) and cloud services, the modern 

computers face the limitations of their computing performance 

in dealing with such vast amounts of data [1]. The conventional 

digital computers based on von Neumann architecture have 

been developed to be specialized in increasing the accuracy 

and speed of logic operations. The advances in complementary 

metal oxide semiconductor (CMOS) technology successfully 

supported such direction of the development in the past. 

However, as the speed of data communication between the 

processing and memory units of the von Neumann architecture 

becomes the bottleneck in rapidly increasing data-intensive 

tasks, questions about the efficiency of the computing 

architecture and the supporting device units have been raised. 

The human brain adopts fundamentally different global 

architecture and composing computing units, and show 

superior performances to conventional computers in certain 

areas that require parallel information process or probabilistic 

or atypical problem solving with low driving energy. The 

competence of the brain originates from the unique structure 

of the neural networks in the brain that connect neurons in a 

large scale through synapses. The structure allows simultaneous 

storage and processing of the data while minimizing power 

consumption required for data communication. Another 
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distinct feature of the brain compared to the modern computer 

is the communication mechanism between neurons, the 

computing units in the biological neural networks. Neurons 

receive and send current spikes based on local and temporal 

inputs from surrounding neighbor neurons. Data processing 

occurs during the transmission of the spike-coded temporal 

information whose results depend on the strength of the 

connectivity, also called synaptic weight. 

The continuous effort to build an artificial intelligence 

established the basis for the novel algorithms that mimic the 

processing of the biological neural networks. The algorithms 

represented by artificial neural network (ANN) model the 

biological neural network by linking the layered nonlinear 

functional units through trained strength of the connectivity, 

called synaptic weight. Implementing such algorithm in the 

conventional computers that adopt fundamentally different 

architecture than the model structure of the algorithm causes 

the inefficiency in time and energy consumption. Separate 

physical device location for storing the large amount of 

synaptic weights and for processing of such data requires 

excessive time and power for data transmission through 

limited communication bandwidth. Crossbar arrays of resistive 

memory have been utilized to perform the vector-matrix 

multiplication during the training and inference steps 

efficiently for the last decade [2-5].  

Spiking neural network (SNN) is considered more advanced 

bioinspired algorithms in that the model encompass the feature 

of the biological neural network that communicate through 

temporal spikes. The simulation of SNN in the modern 

computer is even more challenging due to the complex 

dynamics and the large population of neurons that cannot be 

simulated through a simple combination of CMOS devices. 

Recent announcement of CMOS-based SNN hardware has 

suggested the energy and time efficiency of SNN in solving 

certain types of recognition problems, but the development of 

hardware systems using emerging memory and logic devices 

remained less explored [6].  

Recent advances in various nanoscale electronic devices 

offer potentially powerful options for hardware implementation 

of the biological neural network with their inherent complex 

dynamics that resembles certain characteristics of neurons and 

synapses [5,7-11]. Memristors, short for memory resistors, are 

characterized by hysteretic current-voltage behavior whose 

voltage-induced resistance change can be either volatile or 

non-volatile. The volatile change from high resistance to low 

resistance states can demonstrate the threshold switching of 

the neurons while the nonvolatile change can be utilized to 

store different levels of synaptic weights. Compared to the 

neuron devices based on volatile memristors, synaptic devices 

based on nonvolatile memristors have been more extensively 

studied due to their wide application ranges including the 

implementation of both ANN and SNN. The hardware 

demonstration of artificial spiking neurons has been less 

actively pursued partially due to the limited success of SNN 

compared to ANN. However, the potential of SNN in terms of 

time and power efficiency, and the continuing effort to 

develop better algorithms demand corresponding research 

effort in developing proper electronic devices for artificial 

spiking neurons that can efficiently simulate SNN.  

This paper provides a review of recent research on the 

hardware implementation of spiking neurons using volatile 

memristors. The review first introduces the neuron models that 

have been developed to be consistent with the experimental 

observations on biological neurons. Next, the principles of 

different types of volatile memristors are summarized. 

Various switching mechanisms, materials and current-voltage 

characteristics provide a wide range of options for the 

implementation of artificial spiking neurons with different 

levels of complexity. Other electronic components and their 

combinations for circuit-level demonstration of spiking 

neurons will be presented with their output characteristics. 

 

 

2. NEURON MODELS 

2.1 Biological neurons 

2.1.1 Spike generation of neurons 

The structure of a biological neuron that is actively involved 

in the information processing consist of three functional parts: 

dendrite, soma and axon [Fig. 1(a)] [12,13]. The dendrite 

receives input signals from other neurons and transmits them 

to the soma. The soma adds the input signals and performs a 

non-linear processing step. If the total input exceeds a 

threshold, an output is generated as a form of a voltage spike. 

The output signal propagates to the axon, which delivers the 

signal to other neurons. 

The neurons communicate through electrical pulses called 

action potentials or spikes with an amplitude of about 110 mV 
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with a typical duration of 1~10 ms [Fig. 1(a)]. The post-

synaptic membrane potential initially increases linearly to the 

input spikes. The increase decays without an input, but can 

reaches a critical value called a threshold voltage when 

consecutive inputs arrive. The threshold is about -55 mV [25 

mV above the rest potential (-70 mV)]. In the latter case, the 

membrane potential exhibits an abrupt rise to about 110 mV, 

similar to the signal they received from the pre-synaptic neurons.  

The spike-generation process is induced by the opening of 

Na+ channels in the cell membrane. The gradual increase 

occurs in the membrane potential during the time period t1 in 

Fig. 1(a) and (b) [13]. Once the membrane potential exceeds 

the threshold at time t2, the fast inward-flow of Na+ results in 

a significant further rise of the membrane potential. This 

positive feedback raises the potential rapidly until most of the 

available Na+ channels are open. This leads to the observed 

large upswing of the membrane potential. Once reaching the 

maximum, the membrane experiences repolarization as 

described in time period t3 in Fig. 1(a) due to the inactivation 

of the Na+ channels and the opening of the K+ ion channels. 

The refractory period where the membrane potential becomes 

more negative than rest potential (hyperpolarization) after the 

spike prevents the generation of a second spike immediately 

after the first one. The overall shape of action potential is 

described in Fig. 1(c). This short voltage pulse will propagate 

along the axon of neuron to the synapses with other neurons.  

Spike train refers to a chain of action potentials produced by 

a single neuron in a short time interval. It is believed that the 

number and the timing of spikes carry the information, not the 

exact shape of the action potential [13]. This assumption 

simplifies the physical demonstration of neuron models that 

simulate the signal transmission function of neurons. In 

summary, the neurons gather the temporal local information, 

and produce spike trains at proper times. 

 

2.1.2 Synapses 

In biological neural networks where neurons communicate 

through the spikes, the junction parts between two neurons are 

called synapses. Specifically, the site where the axon of a pre-

synaptic neuron is in contact with the dendrite of a post-

 

Fig. 1. (a) The structure biological neuron. The neuron generates an action potential after receiving multiple spike inputs from the dendrite

(Copyright 2018 Springer Nature [13]). (b) At time t1, a small number of Na+ channels are open before reaching the threshold. At time t2 when 

the threshold voltage reached, most Na+ channels are open due to voltage-mediated activation mechanism. After the potential reached its 

maximum value at t3, the opening of K+ channels causes the decrease of the potential (Copyright 2018 Springer Nature [13]). (c) The change 

of membrane potential and the generation of action potential in a biological neuron (Copyright 2019 Wiley-VCH [16]). (d) The magnified view 

of synapse, presynaptic and postsynaptic neurons (Copyright 2016 Wiley-VCH [38]). 
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synaptic cell is the synapse [Fig. 1(d)]. Here, the signal 

sending neuron is called the presynaptic cell and the signal 

receiving neuron is called the postsynaptic cell. Postsynaptic 

potential refers to the voltage response of the postsynaptic 

neuron to a presynaptic spike. 

Membrane potential is the potential difference between the 

interior of the cell and its surroundings. Excitatory synapse 

refers to the synapse where the change of post-synaptic 

potential is positive after the arrival of a spike. If the change is 

negative, the synapse is called inhibitory. The importance of 

the inhibitory neurons is suggested in many models in 

neuroscience, but the hardware demonstrations of neurons in 

electronic devices have more focused on the excitatory 

neurons yet. 

 

2.2 Integrate-and-fire models 

Modeling the dynamics of neural networks unavoidably 

involves the extraction of key features of neurons that are 

believed to contribute to the global function of the brain such 

as perception or decision making. Spike generation 

mechanism is a particular interest in the modeling while the 

details in molecular levels are often ignored. Integrate-and-fire 

models describe action potentials as events based on the 

experimental observation that neuronal action potentials of a 

given neuron always have roughly the same form. The 

observation indicates that the spike shape is not used to 

transmit information. The precise moment in time of the 

events does. Two components are necessary to describe the 

integrate-and-fire models: the variation of the membrane 

potential and a mechanism to generate spikes. This review 

focuses on qualitative description of the neuron models to 

introduce the devices and circuits for their hardware 

implementation later, but the readers who are interested in the 

mathematical details of the model should refer to the relevant 

references [12]. In integrate-and-fire models, the timing of 

spike generation determine the moment of the events.  

Figure 2(a) shows a basic electrical circuit that can 

demonstrate integrate-and-fire models [14]. The circuit consists 

of a capacitor and a switch in parallel. Integration occurs as 

the charge accumulates across the capacitor as a result of the 

input current [Process (1) in Fig. 2(a)]. Without a leaky 

electrical path, no relaxation is explicitly considered. When 

the voltage across the capacitor exceeds a certain threshold, 

 

Fig. 2. (a) The basic circuit consisting of one capacitor and one 

variable resistor for the demonstration of leaky integrate-and-fire 

neuron (Copyright 2019 Wiley-VCH [14]) and (b) Hodgkin–Huxley 

model (Copyright 2019 Wiley-VCH [16]).  

 

 

the switch in the circuit discharges the accumulated charges 

[Process (2) in Fig. 2(a)], which simulate the firing event 

[Process (3) and (4) in Fig. 2(a)]. In other types of 

demonstration, a nonvolatile phase change memory with 

multilevel analogue resistance states can store the information 

of the membrane potential instead of the charge storing 

capacitor [15].  

 

2.3 Leaky-integrate-and-fire model 

In biological neurons, the membrane potential returns to the 
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rest potential in the absence of an input from the pre-synaptic 

neurons. This relaxation property is considered in a leaky-

integrate-and-fire model. The basic electrical circuit 

representing a leaky integrate-and-fire model is similar to the 

one for integrate-and-fire model, but with a leaky component 

that can be innate either in the capacitor or switch in its off-

state or an additional resistor in parallel with the capacitor. In 

the absence of input, the voltage across the capacitor that 

describes the membrane potential of a neuron decays 

exponentially to the rest potential. For a typical neuron, the 

decay time is in the range of 10ms, which is about ten times 

longer compared to the duration of a spike. 

The leaky-integrate-and-fire model is one of the popular 

models in the hardware demonstration of neurons due to the 

small number of elements in the circuit and the possibility of 

parameter tuning using diverse physical properties of 

emerging switch devices. The limitation of the model includes 

the absence of components that can simulation the memory 

effects of neurons observed in experiments such as adaptation 

and bursting. 

 

2.4 Hodgkin-Huxley model 

The Hodgkin-Huxley model is one of the more detailed 

biophysical neuron models that describe the generation of 

action potentials based on the level of ion channels and ion 

current flow [12]. The Hodgkin-Huxley model includes three 

types of currents that can change the membrane potential: the 

current through Na+ and K+ channels, and a passive leaky 

channel for the relaxation. The three types of current paths are 

still a simplified model considering the richness of different 

ion channels observed experimentally, but successfully 

describe the change of the membrane potential based on the 

physical model of variable conductivity of a specific type of 

ion channels. When Na+ channels are open, the selective 

passage of Na+ through the channels causes a rest or Nernst 

potential (ENa) of about +67 mV. This means that, at 

equilibrium with open Na+ channels, the interior of the cell has 

a positive potential with respect to the surround because of the 

selective influx of Na+ from the external (with high 

concentration of Na+) to the internal part (with low 

concentration of Na+) of neurons. When K+ channels are 

considered, instead, the equilibrium potential EK should 

become -83 mV. The negative sign is caused by the higher 

concentration of K+ in the interior of the neuron and the 

resulting outflux of K+ as previously described in Fig. 1(b). It 

is found experimentally that the resting potential of the 

membrane is about -70 mV due to the contributions from both 

channels, but with stronger effect of K+ ion channels. 

Figure 2(b) describes a model circuit that can be used to 

analyze the behavior of the Hodgkin-Huxley model [16]. The 

node voltage assigned as Vm describes the membrane potential 

which changes with the conductance variations of GNa and GK. 

The reversed orientation of the two batteries connected to GNa 

and GK reflect the opposite signs of the Nernst potentials of 

Na+ and K+ ion channels. The variable resistors can be 

considered as lumped models of a finite number of ion 

channels. The variations in the conductivity of the resistors are 

described with several parameters that reflect the activation 

and relaxation of the channels as a function of the membrane 

potential, and enable the model to generate action potentials.  

The leaky integrate-and-fire model described here has a 

rather limited scope in describing the complex neuronal 

dynamics including the memory effect partly due to the fixed 

value of voltage threshold determined by the model parameters 

[12]. More generalized models incorporate adaptation variables 

and stochasticity. The addition can reproduce the adaptive 

threshold voltage and memory effects often observed in 

characteristic firing patterns of real biological neurons. 

 

 

3. MEMRISTOR-BASED THRESHOLD SWITCH 

We reviewed representative neuron models in Part 2 and 

two basic electrical circuits that can simulate the membrane 

potential of neurons. The electrical elements in the circuits for 

the simulation of artificial neurons can be built with various 

types of electronic devices with different physical properties. 

Artificial neurons built with conventional CMOS have 

limitations in emulating the rich dynamics of biological 

counterparts in large scale without sacrificing the power 

consumption and circuit dimensions. Emerging electronic 

devices based on memristors, instead, can be used to construct 

an electronic equivalent of biological neurons in a more 

energy and space efficient way owing to their innate physical 

properties and rich dynamics that resemble biological neurons. 

Memristors can show both volatile and nonvolatile resistive 

switching depending on the retention time of their low 
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resistance state. The volatile memristors which becomes 

locally active within a hysteretic negative differential resistance 

regime in current-voltage characteristics are of particular 

interest in the current review since their volatile switching to 

low resistance state can simulate the spike generation of 

neurons in various ways. Before introducing the recent 

progress in hardware demonstration of neurons using volatile 

memristors, Part 3 summarizes the electrical features of the 

volatile memristors and their plausible threshold switching 

mechanism. 

 

3.1 Device structure and characteristics 

The basic memristor cell adopts a two-terminal device 

structure as depicted in Fig. 3(a) [17]. The resistance switching 

layer is sandwiched between two metal layers whose potential 

difference determine the resistance state of the active layer. 

The two-terminal structure allows 4F2 (F: minimum feature 

size) device dimension and three-dimensional vertical stack, 

which is beneficial for large integration density of neurons. 

Recent studies also developed three or four-terminal structure 

of the volatile memristors to separate the terminals for 

resistance control and for read operation or to better control 

the resistance states in a gradual manner [18-20]. 

Various materials can show threshold switching behavior, 

and be categorized based on their compositions. Oxides and 

chalcogenides such as SiO2, HfO2 (oxides) and GeTe or GeSe 

(chalcogenides) are one of the biggest categories [21-25]. 

Two-dimensional materials such as h-BN, MoS2 and 

perovskites have also been actively researched for their 

threshold switching properties [26-28]. Besides the active 

layer, electrodes also serve a critical role in threshold 

switching as they can provide metal ions that can form a 

conductive filament in the active area or control the 

composition of the active layer through chemical reactions.  

Figure 3(b) shows the unipolar switching behavior of 

volatile memristors [16]. The sign of voltage polarity does not 

influence the switching behavior when the state is restored to 

the initial state after the switching due to the symmetric 

structure of the two-terminal device. The initial high-resistance 

state (HRS) is switched to low-resistance state (LRS) when the 

bias reaches the threshold level (Vth). The low-resistance state 

is maintained even with a reduced bias during the reversed 

voltage swing until the voltage reaches the minimum that can  

 

Fig. 3. (a) The two-terminal structure of a unit-cell of typical 

memristors (Copyright 2020 Wiley-VCH [17]) and (b) I-V 

characteristics of unipolar threshold switching (Copyright 2019 

Wiley-VCH [16]). 

 

 

maintain the low-resistance state. This voltage is called a hold 

voltage (Vhold). The threshold swing can also be induced by a 

voltage pulse in which switching and relaxation speed can be 

measured. 

 

3.2 Threshold switching mechanism 

The threshold switching mechanism depends on the material 

choice for the device. The exact mechanism is still a subject 

of active debate for certain types of the devices due to the 

limitations of each model. For the active layers which possess 

mobile ions under voltage bias, the volatile switching often 

occurs due to the formation and rupture of local conductive 

filament. The ions can be provided by electrodes such as Ag 

and Cu that can be electrochemically oxidized or reduced. 

Thermal models assume the existence of a positive feedback 

loop for thermal activation of carriers by Joule heating above 

Vth. Modifications are necessary for amorphous chalcogenides 

where electronic contribution cannot be neglected. 

Threshold switching of Mott memristors such as the ones 
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based on NbO2 or VO2 is a representative example that 

undergoes temperature-induced volatile resistance change 

[29,30]. The mechanism partially explains the threshold 

switching of chalcogenide materials, but the modification that 

considers the electronic contribution becomes more reasonable 

to explain the experimental data. The double-injection model 

first suggested by Mott and Henisch assumes electrons and 

holes injected from the electrode and the resulting space-

charge region at the cathode and anode [31-33]. The two 

space-charge regions grow under increased bias and 

eventually overlap when abrupt conductivity changes occur. 

More advanced model based on the valence-alternation defect 

pair was suggested by Adler [34]. The generation and 

recombination of carriers occur in the presence of such defects 

whose number increases with electric field. Ielmini later 

proposed the electron current caused by the tunneling between 

trap sites and continued to modify to the original proposal by 

incorporating a nonequilibrium quasi-Fermi level and carrier 

temperature [35,36]. 

 

 

4. MEMRISTIVE NEURON 

The demonstration of artificial neurons using threshold 

switch represents a simple and faithful option in terms of the 

number of devices and energy consumption in contrast to 

traditional approaches based on CMOS devices. This section 

introduces a few selective examples that implement the spiking 

properties of biological neurons using volatile memristors. 

 

4.1 Artificial neuron based on Mott memristors 

One of the first demonstration of spiking neurons was 

introduced using Mott memristors based on NbO2 formed 

from Nb2O5 [30]. The proposed neuristor realized the essential 

features for spike-based computing such as threshold-driven 

spiking with a refractory period. The threshold switch showed 

rapid operation speed (<1ns) with low transition energy 

(<∼100 fJ), scalability at least to tens of nanometers with 

compatibility with conventional CMOS processes. The 

neuristor circuit contains two Mott memristors. The memristors 

have a parallel capacitor connected to the DC power source 

with opposite polarity, similar to the Nernst potentials of Na+ 

and K+ channels in biological neurons. The output voltage is 

measured across the resistor Rout in the neuristor circuit when 

stimulated by both super-threshold (0.3 V) and sub-threshold 

(0.2 V) voltage inputs. The pulse with an amplitude over the 

device threshold produced an action potential with an 

amplitude of 0.33 V whereas the pulse below its threshold 

induced a small output voltage change of 0.028 V. 

Later, VO2-based active memristor neuron was constructed 

with a similar circuit configuration [29]. Compared to the 

 

Fig. 4. (a) Basic circuit of a VO2-based artificial neuron (Na+ and K+ channels are emulated by oppositely DC biased active memristor devices. 

Scale bar: 100 nm) and (b) basic steps to generate a action spike using a VO2 neuron [(1) Resting state with closed Na+ and K+ channels, (2) 

hyperpolarization induced by the activation of the Na+ channel, (3) depolarization caused by the activation of the K+ channel, and (4) refractory 

period] (Copyright 2018 Springer Nature [29]). 
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conventional approach to form VO2 from amorphous V2O5, 

electroforming-free VO2 memristors avoided the production 

of void in the oxide and electrode damage. The prototype 

circuit described in Fig. 4(a) consists of two DC-biased active 

memristors (X1 and X2) and two parallelly connected 

capacitors (C1 and C2), and load resistors (RL1 or RL2). The 

oppositely-biased memristors X1 and X2 emulate the Na+ and 

K+ ion channels, respectively, through their variable 

conductivity depending on the voltage across them. Detailed 

dynamics to generate a spike can be divided into four steps as 

described in Fig. 4(b). Step 2 and 3 correspond to the 

switching to the low resistance state of X1 and X2, respectively. 

 

4.2 Artificial neuron based on ion-mediated 

memristors 

Neuro-transistor introduced in 2018 utilized a dynamic 

pseudo-memcapacitor (DPM) that consists of one memristor 

and capacitor to demonstrate the integrate-and-fire function of 

soma [13]. The upper layer composed of Pt/Ag/SiOx:Ag/Ag/Pt 

diffusive memristor was serially connected with a Pt/Ta2O5/ 

TaOx/Pt capacitor [Fig. 5(a)]. The overall capacitance was 

initially determined by the diffusive memristor (Cp) due to the 

large dielectric constant of Ta2O5, but switched to the series 

capacitance (Cs) after the diffusive memristor became a low 

resistance state. Figure 5(b) describes the membrane potential 

demonstrated as the voltage across Cs in response to the input 

of voltage pulses. The diffusive memristor of the DPM plays 

the role of Na+ channels in the phase of charge accumulation 

and the role of K+ channels in the phase of discharging. An 

active neuron can be constructed by applying the DPM as the 

gate insulator of a transistor that can convert the voltage spike 

to the current flow [Fig. 5(c)]. 

Quasi-Hodgkin-Huxley neurons that produce a spike more 

similar to the biological one was demonstrated using two 

memristive devices of W/WO3/PEDOT:PSS/Pt assigned as M1 

and M2 in Fig. 6(a) [37]. The innate battery effect in 

conventional oxide-based memristors is originated from the 

 

Fig. 5. (a) Cross-sectional transmission electron micrograph (TEM) image of DPM, (b) the integrate-and-fire of a DPM (at time t1′, the potential 

across the capacitor rose linearly upon the input pulse due to the high resistance of the diffusive memristor and at time t2′, the switching of the 

diffusive memristor to a low resistance state caused full charge of the capacitor), and (c) the structure of neuro-transistor where a DPM consists 

of the gate of a MOSFET (Copyright 2018 Springer Nature [13]).  
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migration of oxygen ions, but the WO3/PEDOT:PSS-based 

memristors rely on the migration of protons supplied by 

PEDOT:PSS. The complete circuit for the demonstration of 

Quasi-Hodgkin-Huxley neurons is described in Fig. 6(a). The 

input signals applied on the memristive device M1 modulate 

the membrane potential simulated as the voltage across R2. 

When the membrane potential is below the threshold value, 

the accumulated current leaks out, which restores the high 

resistance of M1. The output signal, voltage over the resistor 

R3, represents a spike whose shape follows the biological spike 

as shown in Fig. 6(b). 

 

 

5. SUMMARY AND OUTLOOK 

The report reviewed the hardware demonstration of 

biological neurons using dedicated circuits containing volatile 

memristors. Key features of neuronal dynamics are the change 

of membrane potential according to the input ionic current 

from presynaptic neurons. The leaky integrate-and-fire models 

describe the charge accumulation, spike generation, and 

relaxation processes that occur during the information process 

in the brain. More detailed molecular picture of the neurons 

can be included reflecting the variable ion conductance of ion 

channels with their own Nernst potential depending on the 

membrane potential. Simplified circuits can be utilized to 

analyze the behavior of the model using proper elements 

including capacitors and resistors. The report reviewed 

examples of research that applied threshold switch for the 

capacitors and resistors components to reproduce the spiking 

generation properties of the neurons. The memristor-based 

implementation represents the simplest, yet reliable options 

for the demonstration of such circuits by using the innate 

physical properties of the device, which reduces the number of 

the component devices and energy consumption compared to 

the circuits demonstrated with CMOS. 
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