• Title/Summary/Keyword: Hardening curve

Search Result 137, Processing Time 0.021 seconds

Prediction of High Temperature Plastic Deformation Variables on Al 6061 Alloy (Al 6061 합금의 고온 소성변형 조건의 예측)

  • 김성일;정태성;유연철;오수익
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.576-582
    • /
    • 1999
  • The high temperature behavior of Al 6061 alloy was characterized by the hot torsion test in the temperature ranges of 400∼550℃ and the strain rate ranges of 0.05∼5/sec. To decide optimum deformation condition, three types of deformation maps were individually made from the critical strain (εc). deformation resistance(σp) and deformation efficiency (η). The critical strain(εc) for dynamic recrystallization (DRX) which was decided from the inflection point of strain hardening rate(θ) - effective stress (σ) curve was about 0.65 times of peak strain (εp). The relationship among deformation resistance (peak stress, σp), strain rate (ε), and temperature (T) could be expressed by ε=2.9×1013[sinh(0.0256σp]7.3exp (-216,000/RT). The deformation efficiency (η)which was calculated on the basis of the dynamic materials model (DMM) showed high values at the condition of 500∼550℃, 5/sec for 100% strain. The results from three deformation maps were compared with microstructures. The best condition of plastic deformation could be determined as 500℃ and 5/sec.

  • PDF

Evaluation of Flow Stress using Geometric Conditions of Ball Indentation Tests (볼 압입 시험의 기하학적 조건과 유동 응력 곡선의 관계에 관한 연구)

  • 이병섭;이호진;이봉상
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.328-333
    • /
    • 2003
  • Ball indentation tests have been used to estimate the mechanical properties of materials by several investigators. In this study, load-depth curves from ball indentation tests were analyzed using the geometric conditions of the contact between ball and specimen. A series of numerical calculations and experimental results showed that the contact load-depth curves could be simplified by linear functions. Once we obtained the contact indentation depth from linearizing the experimental indentation curves, the estimation process of the flow properties became straight-forward and the scatter of results could be drastically reduced.

Notch Strain Analysis for Low Cycle Fatigue of Welded Joint (저싸이클 피로해석을 위한 용접 토우부 노치 응력-변형을 해석)

  • Kim, Yu-Il;Gang, Jung-Gyu;Sim, Cheon-Sik;Lee, Seong-Geun
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.112-114
    • /
    • 2005
  • Direct nonlinear finite element analysis was carried out using nonlinear kinematic hardening model which was calibrated based on the experimentally determined material properties to obtain notch stress-strain state under cyclic load. By comparing numerical results and experimental data, conclusion was made on how well analysis results match physical phenomenon. Also, suggestion was made on what material curve should be used in conjunction with traditional Neuber/Glinka's rule to take into account the effect of material heterogeneity in its application to welded joint.

  • PDF

In-field Evaluation of Structural Strength and Reliability Using Advanced Indentation System (Advanced Indentation System을 이용한 현장에서의 구조강도 건전성 평가)

  • Choi, Yeol;Son, Dong-Il;Jang, Jae-Il;Kwon, Dong-Il
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.230-237
    • /
    • 2001
  • For the structural integrity of large and complex structures such as railway vehicle, the in-field diagnosis of mechanical properties of the structures is needed, and especially, the mechanical characteristics of the weldment must be carefully evaluated. But, conventional standard testing methods having destructive procedures are not applicable to in-field assessment of mechanical property variations within weldment because they needs the limitations of specimen size and geometry. In this paper, to overcome this problems, the advanced indentation technique (AIS) is introduced for simple and non-destructive/in-field testing of weldment of industrial structures. This test measures indentation load-depth curve during indentation and analyzes the mechanical properties related to deformation and fracture. First of all, flow properties such as yield strength, tensile strength and work hardening index can be evaluated through the analysis of the deformation behavior beneath the spherical indenter. Additionally, case studies of advanced indentation techniques are introduced.

  • PDF

Experimental study on the fatigue performance of aluminum foam sandwich with 304 stainless steel face-sheet

  • Yan, Chang;Jing, Chuanhe;Song, Xuding
    • Steel and Composite Structures
    • /
    • v.39 no.3
    • /
    • pp.229-241
    • /
    • 2021
  • This work focused on aluminum foam sandwich (AFS) with different foam core densities and different face-sheet thicknesses subjected to constant amplitude three-point bending cyclic loading to study its fatigue performance. The experiments were conducted out by a high frequency fatigue test machine named GPS-100. The experimental results showed that the fatigue life of AFS decreased with the increasing loading level and the structure was sensitive to cyclic loading, especially when the loading level was under 20%. S-N curves of nine groups of AFS specimens were obtained and the fatigue life of AFS followed three-parameter lognormal distribution well. AFS under low cyclic loading showed pronounced cyclic hardening and the static strength after fatigue test increased. For the same loading level, effects of foam core density and face-sheet thickness on the fatigue life of AFS structure were trade-off and for the same loading value, the fatigue life of AFS increased with aluminum foam core density or face-sheet thickness monotonously. Core shear was the main failure mode in the present study.

Spherical cavity expansion in overconsolidated unsaturated soil under constant suction condition

  • Wang, Hui;Yang, Changyi;Li, Jingpei
    • Geomechanics and Engineering
    • /
    • v.29 no.1
    • /
    • pp.1-11
    • /
    • 2022
  • A semi-analytical solution to responses of overconsolidated (OC) unsaturated soils surrounding an expanding spherical cavity under constant suction condition is presented. To capture the elastoplastic hydro-mechanical property of OC unsaturated soils, the unified hardening (UH) model for OC unsaturated soil is adopted in corporation with a soil-water characteristic curve (SWCC) and two suction yield surfaces. Taking the specific volume, radial stress, tangential stress and degree of saturation as the four basic unknowns, the problem investigated is formulated by solving a set of first-order ordinary differential equations with the help of an auxiliary variable and an iterative algorithm. The present solution is validated by comparing with available solution based on the modified Cam Clay (MCC) model. Parametric studies reveal that the hydraulic and mechanical responses of spherical cavity expanding in unsaturated soils are not only coupled, but also affected by suction and overconsolidation ratio (OCR) significantly. More importantly, whether hydraulic yield will occur or not depends only on the initial relationship between suction yield stress and suction. The presented solution can be used for calibration of some insitu tests in OC unsaturated soil.

An Experimental Study on the Mechanical Properties of Ductile Outline Form and Fire Resistance of High Strength RC Column (고인성 외곽 거푸집의 역학성능 및 이를 활용한 고강도 RC기둥의 내화성능에 관한 실험적 연구)

  • Rho, Hyoung-Nam;Kim, Jae-Hwan;Kim, Yong-Ro;Kim, Wook-Jong;Kwon, Young-Jin;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.199-203
    • /
    • 2008
  • With recent trend in domestic and global market requiring architectures' conversion into skyscrapers seasoned with the features of landmarks, structural problems in relation with explosive spatting during fire emergencies are arising as controversial issues. Accordingly, many productive researches have been made in relation to the reinforcement techniques for improving fire resistance and the number of applications in the field is gradually increasing. In this study, a ductile outline form using ECC (Engineered Cementations Composites) was made with improvements on the structure and fire resistance to examine its applicability. Also, currently in Japan, the number of studies and applications is increasing focusing on reduction of construction time and improvement of workability with application of Half-PCa method. However, using such method of construction, large structural members decrease the utilization of space and architecture-wise, there is a disadvantage of the weight increase. Therefore, in such context, it would be worth reducing the weight of the structural members by reducing the size using ECC. In addition, its excellent pseudo strain-hardening due to fiber may have great effects on seismic designs. In the mean time, this study planned 3 equal conditions for mix water, PVA fiber and additives excluding binder and refractory to evaluate the mechanical properties of resistance against pressure and internal force. Finally, an evaluation was executed on the fire resistance of the newly made ductile outline form. As a result, from ECC-I to ECC-III, all showed excellent mechanical properties due to pseudo strain-hardening and in the fire resistance test conducted with ISO 834 heating curve, most of them tended to be in the range of the reference temperature (538℃-180min), so there was no occurrence of any explosive spatting.

  • PDF

Spherical Indentation Testing to Evaluate Mechanical Properties in 1Cr-1Mo-0.25V Steel (구형압입시험에 의한 1Cr-1Mo-O.25V강의 기계적 물성 평가)

  • Lee, Jong-Min;Lee, Seung-Seok;Lee, Ouk-Sub;Nam, Young-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.5
    • /
    • pp.516-522
    • /
    • 2002
  • For the experimental study of rotor steel, seven kind of specimens with different degradation levels were prepared by isothermal heat treatment at $630^{\circ}C$. Spherical indentation technique was developed to evaluate the flow properties of metallic materials in carbon steel, stainless steel, and alloys, etc. Through the spherical indentation test, differently degraded 1Cr-1Mo-0.25V steel's mechanical properties were observed and compared with conventional standard test data. The flow properties of 1Cr-1Mo-0.25V steel's were estimated by analyzing the indentation load-depth curve. To characterize the flow property, we used material yield slope and constraint factor index rather than strain-hardening exponent because the variation of strain-hardening exponent was very little and the data showed irregularly. And the constraint factor's effect was small when the material yield slope was taken into account.

Fatigue and Cyclic Deformation Behavior with the Unreinforced Matrix Alloy and Al/$Al_2O_3$ Metal Matrix Composites (기지금속과 $Al_2O_3$/Al 금속복합재료의 피로 및 주기적 변형거동)

  • 송정일
    • Composites Research
    • /
    • v.12 no.5
    • /
    • pp.1-11
    • /
    • 1999
  • Cyclic deformation and fatigue behavior of $Al/$Al_2O_3$ metal matrix composites and matrix alloy were studied. Hatigue strength Al/$Al_2O_3$ composites was about 210MPa, and that of Al matrix alloy was 170MPa. Most of the resultant displacement due to permanent plastic deformation occurred in less than the first 5% of fatigue life. In case of composites, decrease of cyclic displacement was smaller than that of matrix because the reinforcements acted as barriers to dislocation movement. Consequently, cyclic stress-displacement response curve can be considered to have these atages ; an initial few cycles of rapid hardening, followed by progressive hardening for most the fatigue life, and then just prior to failure, an instantaneous drop in stress carrying capability of the material due to multiple microcrack initiation, eventual coalescence of microcrack to form a macrocrack and then rapid macroscopic crack growth.

  • PDF

Effects of In on the Precipitation Phenomena of Al-2.1Li-2.9Cu Alloy by Differential Scanning Calorimetry (열분석법에 의한 Al-2.1Li-2.9Cu합금이 석출현상에 미치는 In 첨가의 영향)

  • Park, Tae-Won;Song, Young-Beum;Lee, Yong-Yun
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.10 no.4
    • /
    • pp.237-245
    • /
    • 1997
  • A study was conducted to examine the effects of In addition on the precipitation behaviors of Al-2.1Li-2.9Cu alloy by differential scanning calorimetry, transmission electron microscopy and micro-hardness tester. DSC analysis was measured over the temperature range of $25{\sim}550^{\circ}C$ at a heating rate of $2{\sim}20^{\circ}C$/min. The heat evolution peaks due to the formation of GP zone and ${\delta}$'phase shift to higher temperature and the peaks to $T_1$ and ${\theta}$'phases shift to lower temperature by In addition. From this result, it was proved that the formation of GP zone and ${\delta}$'phase is suppresed whereas that of $T_1$ and ${\theta}$'phases are accelerated by the In addition of 0.15wt%. The age hardening curve aged at $190^{\circ}C$ showed that the In bearing alloy(alloy B) has more faster age hardening response and a higher peak hardness than In-free alloy(alloy A), attributed to the fine and homogeneous distribution of $T_1$ and ${\theta}$'phases. The activation energies for the formation of ${\delta}$'phase in In-free and In-bearing alloys are 22.3kcal/mol and 18.6kcal/mol, respectively. Those for $T_1(+{\theta}^{\prime})$ phase of In-free and In-bearing alloys are 24.3 and 37.5kcal/mol, respectively. Quenched-in excess vacancies play an important role to the formation of precipitates.

  • PDF