• Title/Summary/Keyword: Hardening Rules

Search Result 22, Processing Time 0.019 seconds

Two Back Stress Hardening Models in Rate Independent Rigid Plasticity (변형률 독립 강소성 구성 방정식에서의 이중 후방 응력 경화 모델)

  • Yun S. J.
    • Transactions of Materials Processing
    • /
    • v.14 no.4 s.76
    • /
    • pp.327-337
    • /
    • 2005
  • In the present work, the two back stress kinematic hardening models are proposed by combining Armstrong-Frederick, Phillips and Ziegler's hardening rules. Simple combination of hardening rules using simple rule of mixtures results in various evolutions of the kinematic hardening parameter. Using the combined hardening models the ultimate back stress fur the present models is also derived. The stress rate is co-rotated with respect to the spin of substructure due to the assumption of kinematic hardening rule in finite deformation regime. The work piece under consideration is assumed to consist of the elastic and the rigid plastic deformation zone. Then, the J2 deformation theory is facilitated to characterize the plastic deformation behavior under various loading conditions. The plastic deformation localization behaviors strongly depend on the constitutive description namely back stress evolution and its hardening parameters. Then, the analysis for Swift's effects under the fixed boundaries in axial directions is carried out using simple shear deformation.

Study of anisoptopy of sheet metals (압연강판의 이방성에 관한 연구)

  • 인정제
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.153.1-156
    • /
    • 1999
  • Based upon the experimental data from multi-stage tensile loading at angles to the rolling direction of steel sheets, anisotropic hardening rules are proposed. Experiments show that orthotropic anisotropy is maintained and the orientations of orthotropy axes are changed during tensile loading. A phenomenological model is proposed which includes the rotations of orthotropy axes, work hardening and kinematic hardening. Using the model, uniaxial tensile stress, R-value and tensile necking strain are predicted and compared with the experimental data.

  • PDF

Simulation of Ratcheting Behavior under Stress Controlled Cyclic Loading using Two-Back Stress Hardening Constitutive Relation (이중 후방 응력 경화 모델을 이용한 주기 하중에서의 래쳐팅 거동 현상 연구)

  • Hong, S.I.;Hwang, D.S.;Yun, S.J.
    • Transactions of Materials Processing
    • /
    • v.17 no.1
    • /
    • pp.19-26
    • /
    • 2008
  • In the present work, the ratcheting behavior under uniaxial cyclic loading is analyzed. A comparison between the published and the results from the present model is also included. In order to simulate the ratcheting behavior, Two-Back Stress model is proposed by combining the non-linear Armstrong-Frederick rule and the non-linear Phillips hardening rule based on kinematic hardening equation. It is shown that some ratcheting behaviors can be obtained by adjusting the control material parameters and various evolutions of the kinematic hardening parameter can be obtained by means of simple combination of hardening rules using simple rule of mixtures. The ultimate back stress is also derived for the present combined kinematic hardening models.

On the Role of Kinematic Hardening Rules in Predicting Relaxation Behavior (응력이완 거동의 예측에 대한 이동경화법칙의 역할)

  • Ho, Kwang-Soo
    • Transactions of Materials Processing
    • /
    • v.17 no.8
    • /
    • pp.579-585
    • /
    • 2008
  • Numerous experimental investigations on metallic materials and solid polymers have shown that relaxation behavior is nonlinearly dependent on prior strain rate. The stress drops in a constant time interval nonlinearly increase with an increase of prior strain rate. And the relaxed stress associated with the fastest prior strain rate has the smallest stress magnitude at the end of relaxation periods. This paper deals with the performance of three classes of unified constitutive models in predicting the characteristic behaviors of relaxation. The three classes of models are categorized by a rate sensitivity of kinematic hardening rule. The first class uses rate-independent kinematic hardening rule that includes the competing effect of strain hardening and dynamic recovery. In the second class, a stress rate term is incorporated into the rate-independent kinematic hardening rule. The final one uses a rate-dependent format of kinematic hardening rule.

Non-Prismatic Beam Element for Nonlinear Seismic Analysis of Steel Moment Frames I: Element Formulation (강재 모멘트 골조의 비선형 지진 해석을 위한 부등단면 보 요소 I: 요소개발)

  • Hwang, Byoung-Kuk;Jeon, Seong-Min;Kim, Kee-Dong;Ko, Man-Gi
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.27-35
    • /
    • 2007
  • This study presents a non -prismatic beam element for modeling the elastic and inelastic behavior of the steel beam, which has the post-Northridge connections in steel moment frames that are subjected to earthquake ground motions. The elastic stiffness matrix for non-prismatic members with reduced beam section (RES) connection is in the closed-form. The plasticity model is of a discrete type and is composed of a series of nonlinear hinges connected by rigid links. The hardening rules can model the inelastic behavior for monotonic and random cyclic loading, and the effects of local buckling. Verification and calibration of the model are presented in a companion paper.

Characteristics of Pre-Heat Treated Steel for Application to Forging (선조질강 소재의 단조공정 측면에서의 특징)

  • Eom, J.G.;Li, Q.S.;Jang, S.M.;Abn, S.T.;Son, Y.H.;Hyun, S.W.;Kim, H.;Yoon, D.J.;Joun, M.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.6
    • /
    • pp.453-457
    • /
    • 2009
  • In this paper, plastic deformation behaviors of ESW105 and SCM435 steels are revealed by simulations and experiments. ESW105 is the special pre-heat-treated steel characterized by high initial yield strength and negligible strain-hardening behavior. The flow stresses of the two steels for large stain are calculated from tensile tests. Axial and lateral compressions of cylindrical bars are tested and simulated and the deformed shapes are compared to characterize the plastic deformation behaviors of the two materials. A forward extrusion process of a cylindrical bar is also simulated to reveal the difference. It has been shown that there are pretty much difference in plastic flow between ESW105 and SCM435 which causes from the difference in strain-hardening capability, implying that the experience-oriented design rules for common commercial materials may lead to failure in process design when the new material of ESW105 is applied without consideration of its plastic deformation behavior.

Characteristics of Pre-Heat Treated Steel for Application to Forging (선조질강 소재의 단조공정 측면에서의 특징)

  • Eom, J.G.;Li, Q.S.;Jang, S.M.;Ahn, S.T.;Son, Y.H.;Hyun, S.W.;Kim, H.;Yoon, D.J.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.48-51
    • /
    • 2009
  • In this paper, plastic deformation behaviors of ESW105 and SCM435 steels are revealed by simulations and experiments. ESW105 is the special pre-heat-treated steel characterized by high initial yield strength and negligible strain-hardening behavior. The flow stresses of the two steels for large stain are calculated from tensile tests. Axial and lateral compressions of cylindrical bars are tested and simulated and the deformed shapes are compared to characterize the plastic deformation behaviors of the two materials. A forward extrusion process of a cylindrical bar is also simulated to reveal the difference. It has been shown that there are pretty much difference in plastic flow between ESW105 and SCM435 which causes from the difference in strain-hardening capability, implying that the experience-oriented design rules for common commercial materials may lead to failure in process design when the new material of ESW105 is applied without consideration of its plastic deformation behavior.

  • PDF

Elasto-Plastic Postbuckling Analysis of Space Truss Structures (공간트러스구조의 탄소성 후좌굴 해석)

  • Lee, Sang-Hwan;Kwun, Ik-No;Kim, Eung-Kyo
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.37-42
    • /
    • 2004
  • The primary objective of this paper is to trace the post-buckling behavior of space trusses in the inelastic range. Modeled member material behavior characteristics of struts in the post-critical elasto-plastic stage are determined and three types of idealized hardening rules are described. To perform this analysis, the present work is used the current stiffness parameter method combined with the cylinderical arc-length method. Numerical examples are presented to illustrate the accuracy and the application of the numerical solutions introduced above.

  • PDF

Beam-Column Element Applicable to Nonlinear Seismic Analysis (비선형 지진 해석을 위한 보-기둥 요소)

  • Kim, Kee Dong;Ko, Man Gi;Lee, Sang Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.4 s.33
    • /
    • pp.557-578
    • /
    • 1997
  • The objective of the study in this paper was to develop a beam-column element to model members with purely flexural yielding, as well as members with yielding under combined flexure and axial force during severe earthquake ground motins. The developed element can be considered as an one-component series hinge type model. It has the capability to model plastic axial deformation and changes in axial stiffness, and employs hardening rules to handle monotonic, cyclic or arbitrary loading. In general, when compared to experimental results and fiber model predictions, the element showed significantly better performance than the bilinear hinger model and could properly model the beam-column behavior of bare steel members in moment resisting frames. The developed element can more accurately predict local deformation demands and overall responses of structural systems under earthquake loadings than the bilinear hinge element.

  • PDF

State of the Art of the Cyclic Plasticity Models of Structural Steel (구조용 강재의 반복소성모델 분석 연구)

  • Lee, Eun Taik
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.735-746
    • /
    • 2002
  • The task of plastic theory is twofold: first, to set up relationships between stress and strain that adequately describe the observed plastic deformation of metals, and second, to develop techniques for using these relationships in studying of the mechanics of metal forming processes, and the anlaysis and design of structures. One of the major problems in the theory of plasticity is to describe the behavior of work-hardening materials in the plastic range for complex loading histories. This can be achieved by formulating constitutive laws either in the integral or differential forms. To adequately predict the response of steel members during cyclic loading, the hardening rule must account for the features of cyclic stress-strain behavior. Neithe of the basic isotropic and kinematic hardening rules is suitable for describing cyclic streess-strain behavior, although a kinematic hardening rule describes the nearly linear portions of the stabilized hystersis loops. There is also a limited expansion of the yield surface as predicted by the isotropic hardening rule. Strong ground motions or wind gusts affect the complex and nonproportional loading histories in the inelastic behavior of structues rather than the proportional loading. Nonproportional loading is defined as externally applied forces on the structure, with variable ratios during the entire loading history. This also includes the rate of time-dependency of the loads. For nonproportional loading histories, unloading may take place along a chord instead of the radius of the load surface. In such cases, the shape of the stress-strain curve has to be determined experimentally for all non-radial loading conditions. The plasticity models including two surface models ae surveyed based on a yield surface and a bound surface that represent a state of maximum stress. This paper is concerned with the improvement of a plasticity models of the two-surface type for structural steel. This is follwed by an overview of plasticity models on structural steel. Finally the need for further research is identified.