• Title/Summary/Keyword: Hardening

Search Result 2,717, Processing Time 0.034 seconds

Behavior of the Residual Stress on the Surfaces of 12Cr Steels Generated by Flame Hardening Process (화염경화 표면처리 공정에 의한 12Cr 강의 잔류응력 거동)

  • 이민구;김광호;김경호;김흥회
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.4
    • /
    • pp.226-233
    • /
    • 2004
  • The residual stresses on the surfaces of low carbon 12Cr steels used as a nuclear steam turbine blade material have been studied by controlling the flame hardening surface treatments. The temperature cycles on the surfaces of 12Cr steel were controlled precisely as a function of both the surface temperature and cooling rate. The final residual stress state generated by flame hardening was dominated by two opposite competitive contributions; one is tensile stress due to phase transformation and the other is compressive stress due to thermal contraction on cooling. The optimum processing temperatures required for the desirable residual stress and hardness were in the range of $850^{\circ}C$ to $960^{\circ}C$ on the basis of the specification of GE power engineering. It was also observed that the high residual tensile stress generated by flame hardening induced the cracks on the surfaces, especially across the prior austenite grain boundaries, and the material failure virtually, which might limit practical use of the surface engineered parts by flame hardening.

Surface Hardening of SM45C Steel by CO2 Laser (CO2 레이저를 이용한 SM45C 강의 표면경화)

  • Park, J.S.;Lee, O.Y.;Song, K.H.;Han, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.8 no.1
    • /
    • pp.44-52
    • /
    • 1995
  • The specimen for laser hardening have been carried out using SM45C which is coated with black paint or graphite for better absorption. Segmented mirror was used in order to produce a square beam ($10{\times}10mm$) at the surface with a homegeneous intensity distribution across the beam. $CO_2$-Laser power was changed from 2kW to 4kW and transfer velocity was varied from 0.1m/min to 2.0m/min. The maximum hardness and case depth of SM45C steel are 790Hv and 1.5mm by laser hardening. When the surface of specimens was melted during laser hardening. the surface hardness of SM45C steel was decreased. The surface hardness of 2 layer coated specimen(black paint: $15.4{\mu}m$, graphite coating: $9.5{\mu}m$) was increased than that of 1 layer coated specimen. It is desirable to prepare 2 or more coating layer on the steel surface in order to sufficient case depth and hardness in laser hardening. The graphite coating on the specimen surface was obtained more uniform temperature distribution than black paint coating in laser hardening process.

  • PDF

The Implementation of Kernel Hardening Function by Recovering the Stack Frame of Malfunction Address on the Linux Operating System (리눅스 운영체제에서 주소값 오류시 스택 복구를 통한 커널 하드닝 기능 구현)

  • Jang, Seung-Ju
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.1
    • /
    • pp.173-180
    • /
    • 2007
  • This paper designs the kernel hardening function by recovering the kernel stack fame to reduce the system error or panic due to the kernel code error. The suggested kernel hardening function guarantees normal system operation by recovering the incorrect address of the kernel stack kernel. The suggesting kernel hardening mechanism is applied to the network module of Linux which is much using put. I experimented the kernel hardening function at the network module of the Linux by forcing panic code.

Burglary Prevention Effect of Target Hardening through Certified Security Products by WDQ Analysis (WDQ분석을 통한 타겟하드닝 CPTED의 침입범죄 예방효과 검증: 안산시 사례 중심으로)

  • Park, Hyeonho;Kim, Kang-Il;Cho, Joon-Tag
    • Korean Security Journal
    • /
    • no.56
    • /
    • pp.9-30
    • /
    • 2018
  • Crime prevention strategies are introduced to reduce the loss caused by crimes, and Target hardening against domestic burglary attacks is broadly accepted as one of such physical security strategies. In terms of business and home security, target hardening is one of the suite of protective measures that are included in crime prevention through environmental design(CPTED). This can include ensuring all doors and windows are sourced and fitted in such a way that they can resist forcible and surreptitious from the attack of intruder. Target hardening with certified security doors, security windows and secure locks are revealed to be much more effective to deter burglary attacks than other security devices, such as CCTV, lightings and alarms which have largely psychological and indirect impact. A pilot program of target hardening utilizing certified security window and locks was carried out in Ansan city, South Korea in 2016. This study is based on the quasi-experimental design of this program for a residential area. The researchers tried to verify the crime displacement effect of the target hardening program and the diffusion effects of crime prevention benefits by analysing the crime statistics. The evaluation utilized WDQ(Weighted Displacement Quotient) technique to analyze whether the crime displacement occurred, compared the crime statistics of the experimental area with that of buffer zone and controlled areas. The result showed that the target hardening program was significantly effective in crime prevention. The number of burglary in the experimental site with target hardening intervention reduced by 100%, although the areas without the intervention showed reduction in the burglary. The crime displacement was not found at all, and the number of burlary at the buffer zone also reduced significantly.

Undrained Analysis of Soft Clays Using an Anisotropic Hardening Constitutive Model: I. Constitutive Model (비등방경화 구성모델을 적용한 연약 지반의 비배수 거동 해석: I. 구성모델)

  • 오세붕
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.6
    • /
    • pp.121-130
    • /
    • 1999
  • The objective of this study is to perform finite element analyses(FEA) using the anisotropic hardening constitutive model on the basis of the total stress concept. An anisotropic hardening model was then developed to solve the problem and its mathematical formulations and experimental verifications were also described. In a companion paper, the constitutive equation will be formulated for accurate and efficient solutions of FEA, and coded into a nonlinear analysis program, and finally a field problem will be analyzed. The proposed model includes the failure criterion of a von Mises type and the anisotropic hardening rule based on the generalized isotropic hardening description, which can model the nonlinearity and the anisotropy of the stress-strain relationship. As a result this study could verty the experimental results for UU triaxial tests, CU triaxial tests for overconsolidated samples, and anisotropic loading tests with the rotation of principal stress axes for $K_0$consolidated samples.

  • PDF

A Study on the Optimal Mixture Ratio for Stabilization of Surface Layer on Ultra-soft Marine Clay (초연약 해성점토의 표층고화처리를 위한 최적배합에 관한 연구)

  • 천병식;고경환;김진춘
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.4
    • /
    • pp.33-43
    • /
    • 2002
  • Recently, as large constructions on the coast increase, an application of a surface layer stabilization method which is one of the improvement methods for dredged soft clay has increased. However, there are few studies about this. The purpose of this study is clarifying characteristics of ultra-soft marine clay and hardening agent. Also, it is verifying an optimal mixture ratio of hardening agent through the laboratory tests according to designed experiments and proving by statistical analysis and pilot tests. Laboratory tests were performed with proper hardening agent and test soil in accordance with the design of experiments. Regression equations between hardening agents materials and unconfined compressive strength were derived from the tests. The applicability of regression equations were also verified by pilot tests. From the test results, it was found that hardening agent materials(cement, slag, fly-ash, inorganic salts, arwin, gypsum etc.) have some effect upon compressive strength. The optimal mixture ratio which satisfies the required compressive strength was derived from the statistical analysis. The effect of ground improvement by cements and hardening agents was confirmed through the pilot tests. This study will suggest data for design or construction criteria of stabilization of surface layer on ultra-soft marine clay.

A Study on the Diode Laser Surface Hardening Treatment of Cast Iron for Die Material(II) -Comparison of Hardening Characteristics by the Parts Applied Heat Treatment- (금형재료용 주철의 다이오드 레이저 표면경화처리에 관한 연구(II) - 표면경화의 적용 부위에 따른 열처리 특성의 차이 -)

  • Kim, Jong-Do;Song, Moo-Keun;Hwang, Hyun-Tae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.8
    • /
    • pp.1048-1054
    • /
    • 2011
  • Laser surface hardening process is the method of hardening surface by inducing rapid self quenching of laser injected area through transfer of surface heat to inside after rapid heating of laser injected area only by high density energy heat source. This surface treatment method does not involve virtually any thermal deformation by heat treatment nor accompanies any other process after surface hardening treatment. In addition, allowing local machining, this method is a surface treatment method suitable for die with complicated shape. In this study, die material cast iron was surface-treated by using high power diode laser with beam profile suitable for heat treatment. Since the shapes of die differ by press die process, specimens were heat-treated separately on plane and corner depending on the applied parts. At this time, corner heat treatment was done with optic head inclined at $10^{\circ}$. As a result, corner heat treatment easily involves concentration of heat input due to limitation of heat transfer route by the shapes compared with plane part, so the treatment accomplished hardening at faster conveying speed than plane heat treatment.

Phase Transformation and Mechanical Properties of 14 K White Gold Alloys by Heat Treatments

  • Yun, Don-Gyu;Seo, Jin-Gyo;An, Yong-Gil;Sin, So-Ra;Han, Dong-Seok;Park, Jong-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.283-283
    • /
    • 2013
  • Because of beautiful glossy and color, the value of gold leverage is very high in Europe. To improve the quality of gold alloys, we performed heat treatment on 14 K white gold alloys by variously changing age-hardening conditions. Age-hardening behavior and the related phase transformation changes were studied to elucidate the hardening mechanism of 14 K white gold alloy. For solid solution treatment [ST], casted gold alloy specimens were treated at high temperature ($750^{\circ}C$) for 30 minutes, and the specimens dropped to water to quench them. For Age-hardening treatment [AT], the specimens were treated at various temperatures ($250{\sim}300^{\circ}C$). After the heat treatment, we observed the phenomenon to increase hardness from 126 Hv to 166 Hv by Vicker's hardness tester. Through electron probe micro-analysis (EPMA) mapping analysis, we investigated that irregular particles were changed uniformly. In the SEM and OM images, two phases of matrix and particle-likestructures were observed, and the precipitation of these elements from the matrix progressed during age-hardening. By transmission electron microscope and X-ray diffraction observation, it was revealed that the formation of the Au3Cu superstructure contributed to the age-hardening at $270^{\circ}C$ in the gold alloy. After the heat treatment, this analysis shows that casted gold alloys were to improve hardness and to moderate surface defects at specific temperatures and duration.

  • PDF

Phase Transformation and Work-hardening Behavior of Ti-based Bulk Metallic Glass Composite

  • Hong, Sung Hwan;Kim, Jeong Tae;Park, Hae Jin;Kim, Young Seok;Park, Jin Man;Suh, Jin Yoo;Na, Young Sang;Lim, Ka Ram;Kim, Ki Buem
    • Applied Microscopy
    • /
    • v.45 no.2
    • /
    • pp.37-43
    • /
    • 2015
  • In present work, work-hardening behavior of TiCu-based bulk metallic glass composite with B2 particles has been studied by systemic structural and mechanical investigations. After yield, pronounced work-hardening of the alloy was clearly exhibited, which was mainly related to the martensitic transformation as well as the deformation twinning in B2 particles during deformation. At the early plastic deformation stage (work-hardening stage), the stress-induced martensitic transformation from B2 phase to B19' phase and deformation-induced twinning of B19' phase was preferentially occurred in the around interface areas between B2 phase and amorphous matrix by stress concentration. The higher hardness value was observed in vicinity of interface within the B2 particles which are probably connected with martensitic transformation and deformation twinning. This reveals that the work-hardening phenomenon of this bulk metallic glass composite is a result of the hardening of B2 particles embedded in amorphous matrix.

Development of Test Method for Simple Shear and Prediction of Hardening Behavior Considering the Bauschinger Effect (단순전단 시험법 구축 및 바우싱거효과를 고려한 경화거동 예측)

  • Kim, Dongwook;Bang, Sungsik;Kim, Minsoo;Lee, Hyungyil;Kim, Naksoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.10
    • /
    • pp.1239-1249
    • /
    • 2013
  • In this study we establish a process to predict hardening behavior considering the Bauschinger effect for zircaloy-4 sheets. When a metal is compressed after tension in forming, the yield strength decreases. For this reason, the Bauschinger effect should be considered in FE simulations of spring-back. We suggested a suitable specimen size and a method for determining the optimum tightening torque for simple shear tests. Shear stress-strain curves are obtained for five materials. We developed a method to convert the shear load-displacement curve to the effective stress-strain curve with FEA. We simulated the simple shear forward/reverse test using the combined isotropic/kinematic hardening model. We also investigated the change of the load-displacement curve by varying the hardening coefficients. We determined the hardening coefficients so that they follow the hardening behavior of zircaloy-4 in experiments.