DOI QR코드

DOI QR Code

Phase Transformation and Work-hardening Behavior of Ti-based Bulk Metallic Glass Composite

  • Hong, Sung Hwan (Department of Nanotechnology and Advanced Materials Engineering, Sejong University) ;
  • Kim, Jeong Tae (Department of Nanotechnology and Advanced Materials Engineering, Sejong University) ;
  • Park, Hae Jin (Department of Nanotechnology and Advanced Materials Engineering, Sejong University) ;
  • Kim, Young Seok (Department of Nanotechnology and Advanced Materials Engineering, Sejong University) ;
  • Park, Jin Man (Global Technology Center, Samsung Electronics Co., Ltd.) ;
  • Suh, Jin Yoo (High Temperature Energy Materials Research Center, Korea Institute of Science & Technology (KIST)) ;
  • Na, Young Sang (Light Metal Division, Korea Institute of Materials Science (KIMS)) ;
  • Lim, Ka Ram (Light Metal Division, Korea Institute of Materials Science (KIMS)) ;
  • Kim, Ki Buem (Department of Nanotechnology and Advanced Materials Engineering, Sejong University)
  • Received : 2015.05.30
  • Accepted : 2015.06.24
  • Published : 2015.06.30

Abstract

In present work, work-hardening behavior of TiCu-based bulk metallic glass composite with B2 particles has been studied by systemic structural and mechanical investigations. After yield, pronounced work-hardening of the alloy was clearly exhibited, which was mainly related to the martensitic transformation as well as the deformation twinning in B2 particles during deformation. At the early plastic deformation stage (work-hardening stage), the stress-induced martensitic transformation from B2 phase to B19' phase and deformation-induced twinning of B19' phase was preferentially occurred in the around interface areas between B2 phase and amorphous matrix by stress concentration. The higher hardness value was observed in vicinity of interface within the B2 particles which are probably connected with martensitic transformation and deformation twinning. This reveals that the work-hardening phenomenon of this bulk metallic glass composite is a result of the hardening of B2 particles embedded in amorphous matrix.

Keywords

References

  1. Das J, Pauly S, Bostrom M, Durst K, Goken M, and Eckert J (2009) Designing bulk metallic glass and glass matrix composites in martensitic alloys. J. Alloys Compd. 483, 97-101. https://doi.org/10.1016/j.jallcom.2008.08.139
  2. Das J, Tang M B, Kim K B, Theissmann R, Baier F, Wang W H, and Eckert J (2005) "Work-Hardenable" ductile bulk metallic glass. Phys. Rev. Lett. 94, 205501. https://doi.org/10.1103/PhysRevLett.94.205501
  3. Fan C, Li H Q, Kecskes L J, Tao K X, Choo H, Liaw P K, and Liu C T (2006) Mechanical behavior of bulk amorphous alloys reinforced by ductile particles at cryogenic temperatures. Phys. Rev. Lett. 96, 145506. https://doi.org/10.1103/PhysRevLett.96.145506
  4. Fan C, Ott R T, and Hufnagel T C (2002) Metallic glass matrix composite with precipitated ductile reinforcement. Appl. Phys. Lett. 81, 1020-1022. https://doi.org/10.1063/1.1498864
  5. Gargarella P, Pauly S, Samadi Khoshkhoo M, Kuhn U, and Eckert J (2014) Phase formation and mechanical properties of Ti-Cu-Ni-Zr bulk metallic glass composites. Acta Mater. 65, 259-269. https://doi.org/10.1016/j.actamat.2013.10.068
  6. Greer A L (1995) Metallic glasses. Science 267, 1947-1953. https://doi.org/10.1126/science.267.5206.1947
  7. Hays C C, Kim C P, and Johnson W L (2000) Microstructure controlled shear band pattern formation and enhanced plasticity of bulk metallic glasses containing in situ formed ductile phase dendrite dispersions. Phys. Rev. Lett. 84, 2901-2904. https://doi.org/10.1103/PhysRevLett.84.2901
  8. Hofmann D C, Suh J Y, Wiest A, Duan G, Lind M L, Demetriou M D, and Johnson W L (2008a) Designing metallic glass matrix composites with high toughness and tensile ductility. Nature 451, 1085-1089. https://doi.org/10.1038/nature06598
  9. Hofmann D C, Suh J Y, Wiest A, Lind M L, Demetriou M D, and Johnson W L (2008b) Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility. Proc. Natl. Acad. Sci. U S A 105, 20136-20140. https://doi.org/10.1073/pnas.0809000106
  10. Hollomon J H (1945) Tensile deformation. Trans. AIME 162, 268-290.
  11. Hong S H, Kim J T, Lee M W, Park J M, Lee M H, Kim B S, Park J Y, Seo Y, Suh J Y, Yu P, Qian M, and Kim K B (2014) Combinatorial influence of bimodal size of B2 TiCu compounds on plasticity of Ti-Cu-Ni-Zr-Sn- Si bulk metallic glass composites. Metall. Mater. Trans. A 45, 2376-2381. https://doi.org/10.1007/s11661-013-1947-9
  12. Inoue A, Shen B, Koshiba H, Kato H, and Yavari A R (2003) Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties. Nature Mater. 2, 661-663. https://doi.org/10.1038/nmat982
  13. Inoue A and Takeuchi A (2011) Recent development and application products of bulk glassy alloys. Acta Mater. 59, 2243-2267. https://doi.org/10.1016/j.actamat.2010.11.027
  14. Kim J T, Hong S H, Lee C H, Park J M, Kim T W, Lee W H, Yim H I, and Kim K B (2014) Plastic deformation behavior of Fe-Co-B-Si-Nb-Cr bulk metallic glasses under nanoindentation. J. Alloys Compd. 587, 415-419. https://doi.org/10.1016/j.jallcom.2013.10.097
  15. Kim K B, Das J, Venkataraman S, Yi S, and Eckert J (2006b) Work hardening ability of ductile Ti45Cu40Ni7.5Zr5Sn2.5 and Cu47.5Zr47.5Al5 bulk metallic glasses. Appl. Phys. Lett. 89, 071908. https://doi.org/10.1063/1.2337534
  16. Kim K B, Das J, Wang X D, Zhang X, Eckert J, and Yi S (2006a) Effect of Sn on microstructure and mechanical properties of (Ti-Cu)-based bulk metallic glasses. Philos. Mag. Lett. 86, 479-486. https://doi.org/10.1080/09500830600871210
  17. Kim K B, Zhang X F, Yi S, Lee M H, Das J, and Eckert J (2008) Effect of local chemistry, structure and length scale of heterogeneities on the mechanical properties of a Ti45Cu40Ni7.5Zr5Sn2.5 bulk metallic glass. Philos. Mag. Lett. 88, 75-81. https://doi.org/10.1080/09500830701736338
  18. Lee C H, Kim J T, Hong S H, Song G A, Jo J H, Moon S C, and Kim K B (2014a) Investigation of the mechanical properties of Ti-Fe-Sn ultrafine eutectic composites by dendrite phase selection. Met. Mater. Int. 20, 417-421. https://doi.org/10.1007/s12540-014-3003-8
  19. Lee J K, Kim H J, Kim T S, and Bae J C (2007) Plasticity in bulk metallic glass composites containing dual amorphous phases. Mater. Sci. Forum. 539, 2026-2030.
  20. Lee S W, Kim J T, Hong S H, Park H J, Park J Y, Lee N S, Seo Y, Suh J Y, Eckert J, Kim D H, Park J M, and Kim K B (2014b) Micro-to-nanoscale deformation mechanisms of a bimodal ultrafine eutectic composite. Sci. Rep. 4, 6500. https://doi.org/10.1038/srep06500
  21. Park J M, Han J H, Mattern N, Kim D H, and Eckert J (2012) Designing Zr-Cu-Co-Al bulk metallic glasses with phase separation mediated plasticity. Metall. Mater. Trans. A 43, 2598-2603. https://doi.org/10.1007/s11661-011-1050-z
  22. Pauly S, Gorantla S, Wang G, Kuhn U, and Eckert J (2010) Transformationmediated ductility in CuZr-based bulk metallic glasses. Nat. Mater. 9, 473-477. https://doi.org/10.1038/nmat2767
  23. Pauly S, Liu G, Wang G, Kuhn U, Mattern N, and Eckert J (2009) Microstructural heterogeneities governing the deformation of Cu47.5Zr47.5Al5 bulk metallic glass composites. Acta Mater. 57, 5445-5453. https://doi.org/10.1016/j.actamat.2009.07.042
  24. Qiao J W, Sun A C, Huang E W, Zhang Y, Liaw P K, and Chuang C P (2011) Tensile deformation micromechanisms for bulk metallic glass matrix composites: from work-hardening to softening. Acta Mater. 59, 4126-4137. https://doi.org/10.1016/j.actamat.2011.03.036
  25. Schuh C A, Hufnagel T C, and Ramamurty U (2007) Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067-4109. https://doi.org/10.1016/j.actamat.2007.01.052
  26. Spaepen F (1977) A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407-415. https://doi.org/10.1016/0001-6160(77)90232-2
  27. Telford M (2004) The case for bulk metallic glass. Mater. Today 7, 36-43.
  28. Tian L, Cheng Y Q, Shan Z W, Li J, Wang C C, Han X D, Sun J, and Ma E (2011) Approaching the ideal elastic limit of metallic glasses. Nature Comm. 3, 609.
  29. Wu Y, Xiao Y H, Chen G L, Liu C T, and Lu Z P (2010) Bulk metallic glass composites with transformation-mediated work-hardening and ductility. Adv. Mater. 22, 2770-2773. https://doi.org/10.1002/adma.201000482
  30. Zhang Z, Zhao W, Sun Q, and Li C (2006) Theoretical calculation of the strain-hardening exponent and the strength coefficient of metallic materials. J. Mater. Eng. Perf. 15, 19-22. https://doi.org/10.1361/10599490524057
  31. Zhang Z Y, Wu Y, Zhou J, Song W L, Cao D, Wang H, Liu X J, and Lu Z P (2013) Effects of Sn addition on phase formation and mechanical properties of TiCu-based bulk metallic glass composites. Intermetallics 42, 68-76. https://doi.org/10.1016/j.intermet.2013.05.009
  32. Zhu Z, Zhang H, Hu Z, Zhang W, and Inoue A (2010) Ta-particulate reinforced Zr-based bulk metallic glass matrix composite with tensile plasticity. Scripta Mater. 62, 278-281. https://doi.org/10.1016/j.scriptamat.2009.11.018