DOI QR코드

DOI QR Code

Development of Test Method for Simple Shear and Prediction of Hardening Behavior Considering the Bauschinger Effect

단순전단 시험법 구축 및 바우싱거효과를 고려한 경화거동 예측

  • Kim, Dongwook (Dept. of Mechanical Engineering, Sogang Univ.) ;
  • Bang, Sungsik (Dept. of Mechanical Engineering, Sogang Univ.) ;
  • Kim, Minsoo (Dept. of Mechanical Engineering, Sogang Univ.) ;
  • Lee, Hyungyil (Dept. of Mechanical Engineering, Sogang Univ.) ;
  • Kim, Naksoo (Dept. of Mechanical Engineering, Sogang Univ.)
  • Received : 2013.03.12
  • Accepted : 2013.07.14
  • Published : 2013.10.01

Abstract

In this study we establish a process to predict hardening behavior considering the Bauschinger effect for zircaloy-4 sheets. When a metal is compressed after tension in forming, the yield strength decreases. For this reason, the Bauschinger effect should be considered in FE simulations of spring-back. We suggested a suitable specimen size and a method for determining the optimum tightening torque for simple shear tests. Shear stress-strain curves are obtained for five materials. We developed a method to convert the shear load-displacement curve to the effective stress-strain curve with FEA. We simulated the simple shear forward/reverse test using the combined isotropic/kinematic hardening model. We also investigated the change of the load-displacement curve by varying the hardening coefficients. We determined the hardening coefficients so that they follow the hardening behavior of zircaloy-4 in experiments.

본 연구에서는 zircaloy-4 판재에 대해 바우싱거 효과를 고려한 경화거동 예측모델을 구축했다. 금속소재 가공에서 인장 후 압축 시 항복응력이 감소한다. 이에 스프링백 해석 시 바우싱거 효과를 반드시 고려해야 한다. Simple shear 시험에서 적정 시편크기 및 적정 조임토크에 대한 결정법을 제시했다. 5 가지 재료에 대한 simple shear 시험을 통해 응력-변형률 곡선을 구했다. 또한 유한요소해석을 활용해 simple shear 하중-변위 곡선으로부터 유효응력-변형률 곡선으로 변환과정을 소개했다. 등방/운동성 경화 조합모델을 활용해 simple shear 순/역방향 시험을 모사했다. 이때 각 경화계수에 따른 하중-변위 곡선 변화를 관찰하고, zircaloy-4에 대한 경화계수를 결정했다.

Keywords

References

  1. Lee, M., Kim, D., Kim, C., Wenner, M. L., Wagoner, R. H. and Chung, K., 2005, "Spring-Back Evaluation of Automotive Sheets Based on Isotropic-kinematic Hardening Laws and Non-Quadratic Anisotropic Yield Functions, Part II : Characterization of Material Properties," International Journal of Plasticity, Vol. 21, pp. 883-914.
  2. Miyauchi, K., 1984, "A Proposal of a Planar Simple Shear Test in Sheet Metals," Scientific Papers of the Institute of Physical and Chemical Research, Vol. 78, pp. 27-42.
  3. An, Y. G., Vegter, H. and Heijne, J., 2009, "Development of Simple Shear Test for the Measurement of Work Hardening," Journal of Materials Processing Technology, Vol. 209, pp. 4248-4254. https://doi.org/10.1016/j.jmatprotec.2008.11.007
  4. Bouvier, S., Haddadi, H., Levee, P. and Teodosiu, C., 2006, "Simple Shear Tests : Experimental Techniques and Characterization of the Plastic Anisotropy of Rolled Sheets at Large Strains," Journal of Processing Technology, Vol. 172, pp. 96-103. https://doi.org/10.1016/j.jmatprotec.2005.09.003
  5. Levee, P. and Monteil, G., 1999, Optimisation de Mesure de Cisaillement en Grandes Deformations, LPMTM Report.
  6. Vladimirov, I. N., Pietryga, M. P. and Reese, S., 2009, "Prediction of Springback in Sheet Forming by a New Finite Strain Model with Nonlinear Kinematic and Isotropic Hardening," Journal of Materials Processing Technology, Vol. 209, pp. 4062-4075. https://doi.org/10.1016/j.jmatprotec.2008.09.027
  7. Eggertsen, P. A. and Mattiasson, K., 2010, "On Constitutive Modeling for Springback Analysis," International Journal of Mechanical Sciences, Vol. 52, pp. 804-818. https://doi.org/10.1016/j.ijmecsci.2010.01.008
  8. Yoshida, F., Uemori, T. and Fujiwara, K., 2002, "Elastic-plastic Behavior of Steel Sheets under Inplane Cyclic Tension-Compression at Large Strain," International Journal of Plasticity, Vol. 18, pp. 633-659. https://doi.org/10.1016/S0749-6419(01)00049-3
  9. Yoshida, F. and Uemori, T., 2003, "A Model of Large-Strain Cyclic Plasticity and Its Application to Springback Simulation," International Journal of Mechanical Sciences, Vol. 45, pp. 1687-1702. https://doi.org/10.1016/j.ijmecsci.2003.10.013
  10. Vincze, G. T., 2007, Investigation Methodologies for Metals Used in Forming Processes, Ph. D. Dissertation, University of Aveiro, Aveiro, Portugal
  11. Hyun, H. C., Kim, M., Kim, D. and Lee, H., 2013, "On Acquiring True Stress-strain Curves of a Sheet Specimen using Tensile Test and FE Analysis Based on a Local Necking Criterion," Journal of Materials Research, submitted
  12. Prager, W., 1956, "A New Method of Analyzing Stresses and Strains in Work-hardening Plastic Solids," Journal of Applied Mechanics, Vol. 23, 493-496.
  13. Ziegler, H., 1958, "A Modification of Prager' s Hardening Rule," Quarterly of Applied Mathe-matics, Vol. 17, pp. 55-65.
  14. Frederick, C. O. and Armstrong, P. J., 2007, "A Mathematical Representation of the Multiaxial Bauschinger Effect," Materials at high tempera-tures, Vol. 24, pp.1-26. https://doi.org/10.3184/096034007X207589
  15. Chaboche, J. L., 2008, "A Review of Some Plasticity and Viscoplasticity Constitutive Theories," International Journal of Plasticity, Vol. 24, pp. 1642-1693. https://doi.org/10.1016/j.ijplas.2008.03.009
  16. ABAQUS User's Manual, Version 6.11, 2012, Dassault Systemes Simulia Corp., Providence, RI, USA.

Cited by

  1. Spring-back Prediction of DP980 Steel Sheet Using a Yield Function with a Hardening Model vol.25, pp.3, 2016, https://doi.org/10.5228/KSTP.2016.25.3.189