• Title/Summary/Keyword: Hardener

Search Result 188, Processing Time 0.023 seconds

Comparison Study of Thermal Decomposition Characteristics of Wattle & Pine Tannin-based Adhesives

  • Kim, Sumin;Lee, Young-kyu;Kim, Hyun-Joong;Eom, Young Geun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.34-41
    • /
    • 2002
  • This study investigated the thermogravimetric analysis of two types of cured tannin-based adhesives from wattle and pine, with three hardeners of paraformaldehyde, hexamethylenetetramine and TN (tris(hydroxyl)nitromethan), at a temperature of 170℃ and a heating rate of 5, 10, 20 and 40℃/min for 10 minutes. The 5 minutes cured wattle tannin-based adhesive with each hardener at 170℃ was also tested to compare the degree of curing. It was found that thermogravimetric analysis could be used to measure the degree of curing of a thermosetting adhesive. The TG-DTG curves of all the adhesive systems were similar and showed three steps in a similar way to a phenolic resin. This means that each adhesive system is well cross-linked. However, a high thermal decomposition rate was shown at 150 to 400℃ in the case of the pine tannin sample with TN (tris(hydroxyl)nitromethan). The Flynn & Wall expression was used to evaluate the activation energy for thermal decomposition. As the level of conversion (𝛼) increased, the activation energy of each system increased. The activation energy of the wattle tannin-based adhesive with paraformaldehyde was higher than the others.

The Effect of Interfacial Properties and RTM Process of Composites with Different Cross-linking Density by Molecular Weight of Hardener (경화제의 분자량에 의한 가교밀도 차이에 따른 복합재료의 계면 물성 및 RTM 성형성에 미치는 영향)

  • Park, Ha-Seung;Shin, Pyeong-Su;Kim, Jong-Hyun;Baek, Yeong-Min;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.30 no.3
    • /
    • pp.169-174
    • /
    • 2017
  • Demand of glass fiber reinforced composites (GFRC) increased with developing aircraft and defense industries using resin transfer molding (RTM) process to produce complex product. In this research, wetting, interfacial, and mechanical properties were evaluated with different Cross-linking Density by Molecular Weight of Hardener. Epoxy resin as matrices was used bisphenol-A type and amine-type hardeners with different molecular weight. Specimens were manufactured via RTM and wetting property of resin and glass fiber (GF) mat was evaluated to viscosity of epoxy and injection time of epoxy matrix. Mechanical property of GFRC was determined via flexural strength whereas interfacial properties were determined by interlaminar shear strength (ILSS) and interfacial shear strength (IFSS). The difference in mechanical property depends upon the fiber weight fraction (wt %) of GFRC by RTM as well as the different Molecular Weight of Hardener.

An Experimental Study on Evaluation of Bond Strength of Arc Thermal Metal Spaying According to Treatment Method of Water Facilities Concrete Surface (수처리 시설물 콘크리트 표면처리 방법에 따른 금속용사 피막의 부착성능 평가에 관한 실험적 연구)

  • Park, Jin-Ho;Lee, Han-Seung;Shin, Jun-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.16 no.2
    • /
    • pp.107-115
    • /
    • 2016
  • In this study, the bond strength of metal spraying system by surface treatment of concrete (waterproof/corrosion method) in water treatment facilities was evaluated. The results showed that the system with Sa-P-R-(S) (sanding-perviousness surface hardener-surface roughness agent-metal spraying-sealing) led to the desirable performance. The bond strength, the coefficient of water permeability and air permeability were 3.7MPa, $0.68{\ast}10^{-8}cm/sec$, and $0.45{\ast}10^{-16}m^2$, respectively. In scanning electron microscope analysis, the microstructure of specimen coated with perviousness surface hardener was much denser than that without it. Therefore, the specimen coated with sanding-perviousness surface hardener-surface roughness agent-metal spraying-sealing had the best bond performance and was the most suitable system to concrete surface in water treatment facilities.

Investigation of Physical Properties and Self Healing of Hardener-Free Epoxy-Modified Mortars with GGBFS (고로슬래그미분말을 혼입한 경화제 무첨가 에폭시수지 모르타르의 물리적 성질 및 자기치유 검토)

  • Jo, Young-Kug;Kim, Wan-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.80-87
    • /
    • 2020
  • The purpose of this study is to investigate the physical properties and self-healing effects of hardener-free epoxy-modified mortars(EMMs) using ground granulated blast furnace slag(GGBFS). The EMMs with GGBFS were prepared with various polymer-binder ratios and GGBFS contents, and tested for strengths, adhesion in tension, water permeation and self-healing effects. The conclusions obtained from the test results are summarized as follows. The compressive strength of the EMMs with GGBFS is reduced with increasing polymer-binder ratios because of reduction of the degree of hardening in the EMMs, and is somewhat inferior to that of unmodified mortars. In the flexural and tensile strengths, the flexural strength of the EMMs is almost constant with increasing polymer-binder ratios. However, the tensile strength of the EMMs is gradually increased with increasing polymer-binder ratios. Regardless of the GGBFS contents, the adhesion in tension of the EMMs increases sharply with increasing polymer-binder ratios. The water permeation of the EMMs is remarkably reduced with increasing polymer-binder ratios and GGBFS contents. The self-healing effect of the hardener-free EMMs with GGBFS is improved with increasing water immersion period at a GGBFS content of 20%.

A Study on the Manufacturing and Applicability of Rosin-based Epoxy Adhesives and Filling Material for Conservation of Wood Crafts (목공예품 보존용 송진 기반 에폭시 접착제 및 메움제의 제조와 적용성에 관한 연구)

  • Wi, Koang-Chul;Han, Won-Sik;Oh, Seung-Jun
    • Journal of Conservation Science
    • /
    • v.36 no.6
    • /
    • pp.475-482
    • /
    • 2020
  • In this study, we synthesized rosin-based epoxy resin and manufactured two components adhesives and epoxy putty using this epoxy resin. This study manufactured main element of adhesives for enabling it to form epoxide group by letting epichlorohydrin react to maleic anhydride modified rosin, and used room temperature curing type triethylenetetramine for hardener. The ratio between main element and hardener of of manufactured adhesives was 100 : 20, and main element and hardener of filling material were manufactured as clay type by mixing them with filler. Manufactured undiluted adhesives and filling material showed very stable result in the adhesive strength (3.06 MPa) and ultraviolet irradiation, showing outstanding result comparing to existing restoration adhesives. And it is considered a material having reversibility as it was dissolved in organic solvents such as acetone and toluene after being hardened, which showed a result that solved part of possible problems caused by restoration. As a result of use and application of manufactured adhesives and filling material for actual wood crafts, they showed excellent results in workability, stability, removability etc., and this study confirmed that the material can be used for and applied to various fields.

Utilization of Some Industrial Wastes for Producing of Polymeric Composite Materials

  • Hojieva, Alohida;Rustamov, Abduvali;Ahmedov, Akmal
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.95-98
    • /
    • 2003
  • Polymeric composite materials on the basis of some industrial wastes are obtained. Some physical parameters of experimental samples are determined. The analysis of exploitative properties of these polymer composite materials allows recommending them as a heat-insulating material in constructions.

  • PDF

The formation of barrier ribs for PDP by capillary infiltration method

  • Kim, Yong-Ho;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.1088-1090
    • /
    • 2002
  • In this study, a new processing route of barrier ribs for the plasma display panels was attempted. A slurry containing ceramic powders for the barrier ribs, binder, hardener, and other additives, was molded into a PDMS mold by capillary infiltration process. The molded slurry was cured prior to mold removal. It was demonstrated that the process can fabricate successfully the cell type barrier ribs of PDP.

  • PDF

A Study for Imitation stone quality improvement for Mix-proportions of design (Based on Product spot of 'D' business of industry) (배합설계법에 의한 인조석 품질 개선 연구 (D업체의 생산 현장을 중심으로))

  • 박주식;김길동;강경식
    • Journal of the Korea Safety Management & Science
    • /
    • v.2 no.3
    • /
    • pp.141-150
    • /
    • 2000
  • This study aim is analysis device development for design of experiment with calcium chloride relation used a hardener to search cause of product crack, product reliability improvement building data-base program for computer system of mixture rate, product improvement, and new product development.

  • PDF

Experimental Investigation of the Effect of Manufacturing and Working Conditions on the Deformation of Laminated Composite Structures (적층복합재료구조물의 변형에 미치는 제작조건과 작동조건의 영향에 대한 실험적 고찰)

  • Nhut, Pham Thanh;Yum, Young-Jin
    • Composites Research
    • /
    • v.26 no.4
    • /
    • pp.265-272
    • /
    • 2013
  • Fiber-reinforced plastic (FRP) is applied to fabricate the main structures of composite boats. Most of them are made from molds. These products deform after releasing from the mold and they also deform in high temperature environment. Therefore, experimental investigation and evaluation of deformation of laminated composite structures under various manufacturing and working conditions are necessary. The specimens of L-shape and curveshape were made from unsaturated polyester resin and fiberglass material. Input factors (independent variables) are percentage of hardener and manufacturing temperature and four levels of working temperature and output factor is the deformation which is measured on these specimens. From the results, it was observed that the higher the hardener rate and temperature, the lower the deformation. When the working temperature increased, the specimens showed great variations for the initial deformation values. Besides, the values of deformation or input factors could be predicted by regression equations.

Development and Physical Properties of Acrylic Resin Coatings Containing Tertiary Amine (3급 아민 함유 아크릴수지 도료 개발 및 물성)

  • Kim, Jin-Wook;Lee, Dong-Chan;Choi, Joong-So
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.579-585
    • /
    • 2017
  • Acrylic resins containing tertiary amine were synthesized by a radical polymerization of monomers including n-butyl acrylate (BA), methyl methacrylate (MMA), n-butyl methacrylate (BMA) and dimethylaminoethyl methacrylate (DMAEMA), and diethylaminoethyl methacrylate (DEAEMA) containing tertiary amine. Synthesized acrylic resins were applied to develope coatings of acrylic resins containing tertiary amine. And ${\gamma}$-glycidoxypropyl trimethoxysilane (GPTMS) or ${\gamma}$-glycidoxypropyl triethoxysilane (GPTES) was used as hardener. Developed coatings were white colored ones to use titanium dioxide and were hardened with hardener for measuring their physical properties. Measured physical properties were basic properties, adhesivity and weatherability. As a result, developed acrylic resins coatings containing tertiary amine showed excellent adhesivity on various substrates and also showed the same result on weatherability on dry weather condition.