• Title/Summary/Keyword: Hard x-ray

Search Result 209, Processing Time 0.038 seconds

GALAXY CLUSTERS IN GAMMA-RAYS: AN ASSESSMENT FROM OBSERVATIONS

  • REIMER OLAF
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.307-313
    • /
    • 2004
  • Clusters of galaxies are believed to constitute a population of astrophysical objects potentially able to emit electromagnetic radiation up to gamma-ray energies. Evidence of the existence of non-thermal radiation processes in galaxy clusters is indicated from observations of diffuse radio halos, hard X-ray and EUV excess emission. The presence of cosmic ray acceleration processes and its confinement on cosmological timescales nearly inevitably yields in predicting energetic gamma-ray emission, either directly deduceably from a cluster's multifreqency emission characteristics or indirectly during large-scale cosmological structure formation processes. This theoretical reasoning suggests several scenarios to actually detect galaxy clusters at gamma-ray wavelengths: Either resolved as individual sources of point-like or extended gamma-ray emission, by investigating spatial-statistical correlations with unidentified gamma-ray sources or, if unresolved, through their contribution to the extragalactic diffuse gamma-ray background. In the following I review the situation concerning the proposed relation between galaxy clusters and high-energy gamma-ray observations from an observational point-of-view.

IMAGING NON-THERMAL X-RAY EMISSION FROM GALAXY CLUSTERS: RESULTS AND IMPLICATIONS

  • HENRIKSEN MARK;HUDSON DANNY
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.5
    • /
    • pp.299-305
    • /
    • 2004
  • We find evidence of a hard X-ray excess above the thermal emission in two cool clusters (Abell 1750 and IC 1262) and a soft excess in two hot clusters (Abell 754 and Abell 2163). Our modeling shows that the excess components in Abell 1750, IC 1262, and Abell 2163 are best fit by a steep power law indicative of a significant non-thermal component. In the case of Abell 754, the excess emission is thermal, 1 ke V emission. We analyze the dynamical state of each cluster and find evidence of an ongoing or recent merger in all four clusters. In the case of Abell 2163, the detected, steep spectrum, non-thermal X-ray emission is shown to be associated with the weak merger shock seen in the temperature map. However, this shock is not able to produce the flatter spectrum radio halo which we attribute to post-shock turbulence. In Abell 1750 and IC 1262, the shocked gas appears to be spatially correlated with non-thermal emission suggesting cosmic-ray acceleration at the shock front.

PRELIMINARY FEASIBILITY STUDY OF THE SOLAR OBSERVATION PAYLOADS FOR STSAT-CLASS SATELLITES

  • Moon, Yong-Jae;Cho, Kyung-Seok;Jin, Ho;Chae, Jong-Chul;Lee, Sung-Ho;Seon, Kwang-Il;Kim, Yeon-Han;Park, Young-Deuk
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.329-342
    • /
    • 2004
  • In this paper, we present preliminary feasibility studies on three types of solar observation payloads for future Korean Science and Technology Satellite (STSAT) programs. The three candidates are (1) an UV imaging telescope, (2) an UV spectrograph, and (3) an X-ray spectrometer. In the case of UV imaging telescope, the most important constraint seems to be the control stability of a satellite in order to obtain a reasonably good spatial resolution. Considering that the current pointing stability estimated from the data of the Far ultraviolet Imaging Spectrograph (FIMS) onboard the Korean STSAT-1, is around 1 arc minutes/sec, we think that it is hard to obtain a spatial resolution sufficient for scientific research by such an UV Imaging Telescope. For solar imaging missions, we realize that an image stabilization system, which is composed of a small guide telescope with limb sensor and a servo controller of secondary mirror, is quite essential for a very good pointing stability of about 0.1 arcsec. An UV spectrograph covering the solar full disk seems to be a good choice in that there is no risk due to poor pointing stability as well as that it can provide us with valuable UV spectral irradiance data valuable for studying their effects on the Earth's atmosphere and satellites. The heritage of the FIMS can be a great advantage of developing the UV spectrograph. Its main disadvantage is that two major missions are in operation or scheduled. Our preliminary investigations show that an X-ray spectrometer for the full disk Sun seems to be the best choice among the three candidates. The reasons are : (1) high temporal and spectral X-ray data are very essential for studying the acceleration process of energetic particles associated with solar flares, (2) we have a good heritage of X-ray detectors including a rocket-borne X-ray detector, (3) in the case of developing countries such as India and Czech, solar X-ray spectrometers were selected as their early stage satellite missions due to their poor pointing stabilities, and (4) there is no planned major mission after currently operating Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI) mission. Finally, we present a preliminary design of a solar X-ray spectrometer covering soft X-ray (2 keV) to gamma ray (10 MeV).

A Study on DC-DC Converter for X-Ray Using Soft-Switching Method (소프트 스위칭 방식을 이용한 X-Ray용 DC-DC Converter에 관한 연구)

  • Kim, Hack-Seong;Kim, Hyen-Joon;Won, Chung-Yuen;Yoo, Dong-Wook;Ha, Sung-Woon
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.379-381
    • /
    • 1994
  • This paper is concerned with a zero-voltage soft-switching PWM DC-DC high-pelter converter using IGBTs, which Bakes the most of the parastic LC parameters of high-voltage transformer link, for diagnostic X-Ray power generator. The converter circuit basically utilizes phase-shift pulse width modulated series resonant full-bridge PWM DC-DC high-Power converter operating at a constant frequency:20kHz. This technique brings about dramatic decreases in the switching losses of power devices and their electrical stresses as compared with the commonly-used hard-switching PWM DC-DC power converter. The high-frequency switching operation of the converters has some effective advantages, which consist in the physical reduction in size and weight and lowered acoustic noise.

  • PDF

Comparison of Physicochemical Properties of Hard and Floury Type Rice Flour by Dry Heat Treatment (건열처리에 따른 경질미와 분질미 쌀가루의 이화학적 특성 비교)

  • Jung, Hee Nam
    • Journal of the Korean Society of Food Culture
    • /
    • v.36 no.5
    • /
    • pp.484-491
    • /
    • 2021
  • This study investigated the effect of dry heat treatment (DHT) on the physicochemical properties of hard type (HR) and floury type (FR) rice to improve the processing aptitude of rice flour. The rice flour was heated at 130℃ for 0, 2 and 4 hours, and the color value, water absorption index (WAI), water soluble index (WSI), swelling power, solubility, pasting properties, particle shape and the X-ray diffraction were measured. After DHT, the L value of rice flour decreased, and the b value increased. The WAI, WSI, swelling power and solubility of HR and FR increased with the increase of treatment time. The cold viscosity and setback increased, while breakdown decreased. Cracks and lumps formed with fine particles were observed. The X-ray diffraction pattern was A-type, while the diffraction intensity decreased. According to the results of the two-way analysis of variance (ANOVA) test, the hydration and pasting properties were significantly different between HR and FR and were affected by DHT time. The results suggest that the properties of modified rice flour by DHT can be used in the food industry.

High Mass X-ray Binary and IGOS with IGRINS

  • Chun, Moo-Young;Moon, Dae-Sik;Jeong, Ueejeong;Yu, Young Sam
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.95-95
    • /
    • 2014
  • The mass measurement of neutron stars or black holes is of fundamental importance in our understanding of the evolution of massive stars and core-collapse supernova explosions as well as some exotic physics of the extreme conditions. Despite the importance, however, it's very difficult to measure mass of these objects directly. One way to do this, if they are in binary systems, to measure their binary motions (i.e., Doppler shifts) which can give us direct information on their mass. Recently many new highly-obscured massive X-ray binaries have been discovered by new hard X-ray satellites such as INTEGRAL and NuSTAR. The new highly-obscured massive X-ray binaries are faint in the optical, but bright in the infrared with many emission lines. Based on the near-infrared spectroscopy, one can first understand the nature of stellar companions to the compact objects, determining its spectral types and luminosity classes as well as mass losses and conditions of (potential) circumstellar material. Next, spectroscopic monitoring of these objects can be used to estimate the mass of compact objects via measuring the Doppler shifts of the lines. For the former, broad-band spectroscopy is essential; for the latter, high-resolution spectroscopy is critical. Therefore, IGRINS appears to be an ideal instrument to study them. An IGRINS survey of these new highly-obscured massive X-ray binaries can give us a rare opportunity to carry out population analyses for understanding the evolution of massive binary systems and formation of compact objects and their mass ranges. In this talk, we will present a sample near-infrared high resolution spectra of HMXB, IGR J19140+0951 and discuss about its spectral feature. These spectra are obtained on 13th July, 2014 from IGRINS commissioning run at McDonald 2.7m telescope. And at final, we will introduce the upgrade plan of IGRINS Operation Software (IGOS), to gather the input from IGRINS observer.

  • PDF

BAT AGN Spectroscopic Survey - The parsec scale jet properties of the ultra hard X-ray selected local AGNs

  • Baek, Junhyun;Chung, Aeree;Schawinski, Kevin;Oh, Kyuseok;Wong, Ivy;Koss, Michael
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.35.4-35.4
    • /
    • 2019
  • We have conducted a 22 GHz very long baseline interferometry (VLBI) survey of 281 local (z < 0.05) active galactic nuclei (AGNs) selected from the Swift Burst Alert Telescope (BAT) 70-month ultra hard X-ray (14-195 keV) catalog. The main goal is to investigate the relation between the strengths of black hole accretion and the parsec-scale nuclear jet, which is expected to tightly correlate but has not been observationally confirmed yet. The BAT AGN Spectroscopic Survey (BASS) provides the least biased AGN sample against obscuration including both Seyfert types, hence it makes an ideal parent sample for studying the nuclear jet properties of an overall AGN population. Using the Korean VLBI Network (KVN), the KVN and VERA Array (KaVA), and the Very Long Baseline Array (VLBA), we observed 281 objects with a 22 GHz flux > 30 mJy, detecting 11 targets (~4% of VLBI detection rate). This implies that the fraction of X-ray AGNs which are currently ejecting a strong nuclear jet is very small. Although our 11 sources span a wide range of pc-scale morphological types, from compact to complex, they lie on a tight linear relation between accretion luminosity and nuclear jet luminosity. Our finding may indicate that the power of nuclear jet is directly responsible for the amount of black hole accretion. We also have probed the fundamental plane of black hole activity in VLBI scale (e.g., few milli-arcsecond). The results from our high-frequency VLBI radio study support that the change of jet luminosity and size follows what is predicted by the AGN evolution scenario based on the Eddington ratio (ƛ$_{Edd}$) - column density ($N_H$) plane, proposed by a previous study.

  • PDF

Evaluation of Deep Learning Model for Scoliosis Pre-Screening Using Preprocessed Chest X-ray Images

  • Min Gu Jang;Jin Woong Yi;Hyun Ju Lee;Ki Sik Tae
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.293-301
    • /
    • 2023
  • Scoliosis is a three-dimensional deformation of the spine that is a deformity induced by physical or disease-related causes as the spine is rotated abnormally. Early detection has a significant influence on the possibility of nonsurgical treatment. To train a deep learning model with preprocessed images and to evaluate the results with and without data augmentation to enable the diagnosis of scoliosis based only on a chest X-ray image. The preprocessed images in which only the spine, rib contours, and some hard tissues were left from the original chest image, were used for learning along with the original images, and three CNN(Convolutional Neural Networks) models (VGG16, ResNet152, and EfficientNet) were selected to proceed with training. The results obtained by training with the preprocessed images showed a superior accuracy to those obtained by training with the original image. When the scoliosis image was added through data augmentation, the accuracy was further improved, ultimately achieving a classification accuracy of 93.56% with the ResNet152 model using test data. Through supplementation with future research, the method proposed herein is expected to allow the early diagnosis of scoliosis as well as cost reduction by reducing the burden of additional radiographic imaging for disease detection.