• Title/Summary/Keyword: Haptic Rendering

Search Result 73, Processing Time 0.045 seconds

Graphic Deformation Algorithm for Haptic Interface System (촉각시스템을 위한 그래픽 변형 알고리즘)

  • Kang, Won-Chan;Kim, Sung-Cheol;Kim, Dong-Ok;Kim, Won-Bae;Kim, Young-Dong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.3
    • /
    • pp.149-154
    • /
    • 2002
  • In this paper, we propose a new graphic deformation algorithm for haptic interface system. Our deformable model is based on non-linear elasticity, anisotropy behavior and the finite element method. Also we developed controller for high-speed communication. The proposed controller is based on the PCI/FPGA technology, which could progress the capability of the position calculating and the force data transmitting. The haptic system is composed of the 6DOF force display device, the high-speed controller, HIR library for 3D graphic deformation algorithm and the haptic rendering algorithm. The developed system will be used on constructing the dynamical virtual environment. We demonstrate the relevance of this approach for the real-time simulating deformations of elastic objects. To show the efficiency of our system, we programmed the simulation of force reflecting. As the result of experiment, we found that it has high stability and easy to control for deformable object than some other systems.

Physics-based Real-time Simulation of Deformable Body for Haptic Interface (햅틱 인터페이스를 위한 물리기반 변형체 실시간 시뮬레이션)

  • Jun, Seong-Ki;Choi, Jin-Bok;Cho, Maeng-Hyo
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.557-562
    • /
    • 2004
  • For constructing virtual environment it is more natural to model object as deformable body than as rigid body. High accuracy of simulation of model and low-latency computational cost for real-time simulation should be guaranteed. We pre-compute Green function through finite element analysis of deformable body and it is possible to simulate deformation of body in real-time environment using Capacitance Matrix Algorithm. Also, the capacitance matrix algorithm enables to construct the haptic rendering which serves the reaction force through a haptic device. The Newmark scheme is used for the more realistic haptic rendering and dynamic simulation in real-time.

  • PDF

Multimodal Interaction on Automultiscopic Content with Mobile Surface Haptics

  • Kim, Jin Ryong;Shin, Seunghyup;Choi, Seungho;Yoo, Yeonwoo
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1085-1094
    • /
    • 2016
  • In this work, we present interactive automultiscopic content with mobile surface haptics for multimodal interaction. Our system consists of a 40-view automultiscopic display and a tablet supporting surface haptics in an immersive room. Animated graphics are projected onto the walls of the room. The 40-view automultiscopic display is placed at the center of the front wall. The haptic tablet is installed at the mobile station to enable the user to interact with the tablet. The 40-view real-time rendering and multiplexing technology is applied by establishing virtual cameras in the convergence layout. Surface haptics rendering is synchronized with three-dimensional (3D) objects on the display for real-time haptic interaction. We conduct an experiment to evaluate user experiences of the proposed system. The results demonstrate that the system's multimodal interaction provides positive user experiences of immersion, control, user interface intuitiveness, and 3D effects.

Comparison of LoG and DoG for 3D reconstruction in haptic systems (햅틱스 시스템용 3D 재구성을 위한 LoG 방법과 DoG 방법의 성능 분석)

  • Sung, Mee-Young;Kim, Ki-Kwon
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.6
    • /
    • pp.711-721
    • /
    • 2012
  • The objective of this study is to propose an efficient 3D reconstruction method for developing a stereo-vision-based haptics system which can replace "robotic eyes" and "robotic touch." The haptic rendering for 3D images requires to capture depth information and edge information of stereo images. This paper proposes the 3D reconstruction methods using LoG(Laplacian of Gaussian) algorithm and DoG(Difference of Gaussian) algorithm for edge detection in addition to the basic 3D depth extraction method for better haptic rendering. Also, some experiments are performed for evaluating the CPU time and the error rates of those methods. The experimental results lead us to conclude that the DoG method is more efficient for haptic rendering. This paper may contribute to investigate the effective methods for 3D image reconstruction such as in improving the performance of mobile patrol robots.

Real-Time Haptic Rendering for Tele-operation with Varying Communication Time Delay (가변적인 통신지연시간을 갖는 원격 작업 환경을 위한 실시간 햅틱 렌더링)

  • Lee, K.;Chung, S.Y.
    • Journal of Power System Engineering
    • /
    • v.13 no.2
    • /
    • pp.71-82
    • /
    • 2009
  • This paper presents a real-time haptic rendering method for a realistic force feedback in a remote environment with varying communication time-delay. The remote environment is assumed as a virtual environment based on a computer graphics, for example, on-line shopping mall, internet game and cyber-education. The properties of a virtual object such as stiffness and viscosity are assumed to be unknown because they are changed according to the contact position and/or a penetrated depth into the object. The DARMAX model based output estimator is proposed to trace the correct impedance of the virtual object in real-time. The output estimator is developed on the input-output relationship. It can trace the varying impedance in real-time by virtue of P-matrix resetting algorithm. And the estimator can trace the correct impedance by using a white noise that prevents the biased input-output information. Realistic output forces are generated in real-time, by using the inputs and the estimated impedance, even though the communication time delay and the impedance of the virtual object are unknown and changed. The generated forces trace the analytical forces computed from the virtual model of the remote environment. Performance is demonstrated by experiments with a 1-dof haptic device and a spring-damper-based virtual model.

  • PDF

A Study of a Physical Property Setting Method for Haptic Rendering of Deformable Volumetric Objects (가변형 볼륨 물체의 햅틱 렌더링을 위한 물리적 속성 결정 방법의 연구)

  • Kim, Jae-Oh;Kim, Sang-Youn
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.8
    • /
    • pp.1146-1159
    • /
    • 2008
  • This paper proposes a method for determining material property of a haptic model which represents the haptic behavior of a target object. This paper also presents a haptic rendering framework. We adapt elastography to obtain the physical property of a target object. One of the key differences between the proposed framework and a traditional method is that the physical property of the target object can be easily set into a haptic model. For evaluating the proposed method, we construct a real-time palpation prototype simulator. In our work, a human liver is selected as a target object and the liver is represented by Shape-retaining Chain Linked Model(S-chain model) for satisfying the real-time performance. We conduct experiments whether a user easily distinguishes abnormal portions from normal portions. From the experimental results, we evaluate that the proposed method provides the discriminable force to users in real-time.

  • PDF

Haptization of Multidimensional Information (다중 정보의 햅틱화)

  • Yim, Sung-Hoon;Choi, Seung-Moon
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.2086-2088
    • /
    • 2009
  • Haptization is delivering the properties of a data set to the user through the haptic sensory channels. When multidimensional information is imparted to the user, unexpected interactions between haptic attributes can cause the perceived information by the user to be distorted from what is contained in the original data set. Such possibility must be carefully considered in designing haptization methods. Previously, we developed a haptic rendering algorithm for the simultaneous presentation of object shape and stiffness for data haptization. In this research, we extend the algorithm to be applicable to several common data structures. We then shift our attention to the haptization of other haptic attributes including friction and damping.

  • PDF

A Haptic Rendering Technique for 3D Objects with Vector Field (벡터 필드를 가진 3차원 오브젝트의 햅틱 렌더링 기법)

  • Kim, Lae-Hyun;Park, Se-Hyung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.4
    • /
    • pp.216-222
    • /
    • 2006
  • Vector field has been commonly used to visualize the data set which is invisible or is hard to explain. For instance, it could be used to visualize scientific data such as the direction and amount of wind and water field, transfer of heat through thermally conductive materials, and electromagnetic field. In this paper, we present a technique to enable intuitive recognition of the data though haptic feedback along with visual feedback. To add tactile information to graphical vector field, we model a haptic vector field and then apply it to the haptic map to guide a user to destination and haptic simulation of water field on 2D images whish can be used ill everyday life. These systems allow one to recognize vector information intuitively through haptic interface. We expect that the haptic rendering technique of vector field can be applied to various applications such as education, training, and entertainment.

Pottery Modeling Using Circular Sector Element Method (부채꼴 요소법을 이용한 3 차원 도자기 모델링)

  • Lee, Jae-Bong;Han, Gab-Jong;Choi, Seung-Moon
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.78-84
    • /
    • 2008
  • This paper presents a fast modeling technique of virtual pottery using force feedback based on a circular sector element method. Previous techniques for simulating deformable objects such as finite element method (FEM) are limited in real-time haptic rendering due to their complexity and expensive computational cost. In our model, circular sector elements which fully represent features of pottery's shape are closely gathered and piled together. This allows efficient deformable object modeling through a decrease in the number of elements and reducing computational cost.

  • PDF

Haptic Rendering based on Real-time Video of Deformable Bodies using Snakes Algorithm (스네이크 알고리즘을 이용한 실시간 영상기반 변형체의 햅틱 렌더링)

  • Kim, Young-Jin;Kim, Jung-Sik;Kim, Jung
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.58-63
    • /
    • 2007
  • 본 논문은 현미경이나 카메라 영상 등의 실시간 영상을 이용한 변형체(deformable object)의 햅틱 렌더링을 구현하는 방법에 관한 것이다. 이는 저속으로 변형하는 물체의 영상정보를 실시간으로 추출하여, 그에 대한 영상처리를 통해 변형과 이동에 대한 위치 정보를 제공함으로써 이루어진다. 물체에 변형이 가해지면 카메라를 통해 컴퓨터로 그 영상이 전송되며 얻어진 영상은 스네이크 알고리즘의 영상처리 과정을 거쳐 이차원 모델 구현을 위한 위치정보를 제공한다. 이 가상모델에 대한 햅틱 렌더링을 구현하여 햅틱장치에 힘 피드백을 주게 되며, 안정적인 햅틱 렌더링의 구현을 위해 보간법(interpolation) 및 보외법(extrapolation)을 적용하여 모델과 햅틱장치간의 샘플링 문제를 해결한다. 그래픽 렌더링 또한 구현하여 조작의 용이함을 제공한다.

  • PDF