• Title/Summary/Keyword: Haptic Control

Search Result 184, Processing Time 0.032 seconds

Energy Bounding Algorithm for Stable Haptic Interaction

  • Kim, Jong-Phil;Ryu, Je-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2765-2770
    • /
    • 2003
  • This paper introduces a novel control algorithm, energy bounding algorithm, for stable haptic interaction. The energy bounding algorithm restricts energy generated by zero-order hold within consumable energy by physical damping that is energy consumption element in the haptic interface. The passivity condition can always be guaranteed by the energy bounding algorithm. The virtual coupling algorithm restricts the actuator force with respect to the penetration depth and restricts generated energy. In contrast, energy bounding algorithm restricts the change of actuator force with respect to time and restricts generated energy by zero-order hold. Therefore, much stiffer contact simulation can be implemented by the energy bounding algorithm. Moreover, the energy bounding algorithm doesn’t is not computationally intensive and the implementation of it is very simple.

  • PDF

A New 6-DOF Parallel Haptic Device: Optimum Design and Analysis (새로운6자유도 병렬형 햅틱 기구의 최적설계 및 해석)

  • 이재훈;김형욱;이병주;서일홍
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.1
    • /
    • pp.63-72
    • /
    • 2003
  • A new 6-DOF parallel haptic device is proposed. Many existing haptic devices require large power due to having floating actuator and also have small workspaces. The proposed new mechanism can generate 6-DOF reflecting force. This device is relatively light by employing non-floating actuators and has large workspace. Kinematic analysis and kinematic optimal design is performed for this mechanism. Dexterous workspace, global isotropic index, and global maximum force transmission ratio are considered as kinematic design indices. To deal with such multi-criteria optimization problem. composite design index is employed. For the given operational specifications, actuator sizing for this mechanism is also carried out.

Simulation and Design of a Multilayer Piezoelectric Actuator

  • Lee, Kabsoo;Yoo, Juhyun;Lee, Sangho;Hong, Jaeil
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.3
    • /
    • pp.144-147
    • /
    • 2017
  • In this study, two- and three-layer ceramic piezoelectric actuators were designed and simulated according to SUS316 thickness, actuator width, and mass using ATILA software in order to develop a piezoelectric actuator for haptic application. Numerical modelling based on the finite element method was performed to find the resonance frequencies and modal shapes of the actuator. The resonance frequency was affected by the thickness of the SUS316 plate and mass. On the other hand, the width of the actuator did not have a significant impact. Maximum displacements were generated at the center of a haptic three-layer ceramic piezoelectric actuator. The two-layer ceramic piezoelectric actuator with a mass of 2.6 g was suitable as $16.28{\mu}m$ at 265 Hz for haptic sensation application.

The Effect of Additional Haptic Supplementation on Postural Control During Squat in Normal Adult (추가적인 햅틱적용이 정상 성인의 스쿼트 동안 자세조절에 미치는 영향)

  • Kim, Mi-Ju;Lee, Ho-Cheol;Park, Ji-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.2
    • /
    • pp.134-142
    • /
    • 2012
  • Purpose: This study examined the effect on postural control during the stimulation of haptic touch with fingertip on the stable surface at quiet standing posture, squat flexion stage, 60 degrees squat stage and squat extension stage. Methods: The postural sway was measured on the force platform, while 30 subjects were squatting, under three different haptic touch conditions (No Touch [NT], Light Touch [LT], Heavy Touch [HT]), above the touch pad in front of their body midline. Three different haptic touch conditions were divided into 1) NT condition; squatting as right index fingers held above the touch pad, 2) LT condition (<1N); squatting as the touch pad was in contact with right index fingers pulp with a pressure not exceeding 1N and 3) HT condition; squatting as subjects were allowed to use the touch pad for mechanical support by transmitting onto it with as much force, choosing with their index fingers. Results: There was significant decrease in LT, rather than that of NT (p<0.01), and in HT, rather than that of LT (p<0.01), as the results of the distance and velocity of center of pressure (COP) in mediolateral direction at quiet standing position. In anteroposterior direction, the distance and velocity of COP in LT and HT showed significant decrease, when compared to that of the data of NT (p<0.01). There was no significant difference between the 3 conditions (NT, LT, and HT), with respect to the distance and velocity of COP in mediolateral direction, during dynamic balance (squat flexion stage, squat extension stage) (p>0.05). In anteroposterior direction, the results of the distance and velocity of COP in HT showed significant decrease when compared to that of the data of NT (p<0.05). Conclusion: Light touch, during the task, decreased the postural sway at static balance. The results suggest that haptic touch should be applied, appropriately, because it varies the effects according to different conditions.

Analysis and Design of a New 6-DOF Haptic Device Using a Parallel Mechanism (병렬구조를 이용한 새로운 6 자유도 역감제시장치의 설계 및 해석)

  • Yoon, Jung-son;Ryu, Je-Ha
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.1
    • /
    • pp.1178-1186
    • /
    • 2001
  • This paper presents design and analysis of a 6 degree-of-freedom new haptic device using a par-allel mechanism for interfacing with virtual reality. The mechanism is composed of three pantograph mecha-misms that, driven by ground-fixed servomotors. stand perpendicularly to the base plate. Three spherical joints connect the top of the pantograph with connecting bars, and three revolute joint connect connecting bars with a mobile joystick handle. Forward and inverse kinematic analyses have been performed and the Jacobian matrix is derived by using the screw theroy. Performance indices such as GPI(Global Payload Index), GCI(Global Conditioning index), Traslation and Orientation workspaces, and Sensitivity are evaluated to find optimal pa-rameters in the design stage. The proposed haptic mechanism has better load capability than those of the ex-isting haptic mechanisms due to the fact that motors are fixed at the base. It has also wider orientation work-space mainly due to RRR type spherical joints.

  • PDF

Development of Cylindrical-object Grasping Force Measuring System with Haptic Technology for Stroke's Fingers (햅틱기술을 이용한 뇌졸중환자의 원통물체잡기 힘측정장치 개발)

  • Kim, Hyeon Min;Kim, Gab Soon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.3
    • /
    • pp.300-307
    • /
    • 2013
  • This paper describes the development of a cylindrical-object grasping force measuring system applied haptic technology to measure the grasping force of strokes patients' fingers and other patients' paralyzed fingers. Because the cylindrical-object and the force measuring device of the developed cylindrical-object grasping force measuring system are connected with the electrical wires, patients and their families have difficulty not only measuring the patients' grasping force using the system but also knowing their rehabilitation extent when using it. In this paper, the cylindrical-object grasping force measuring system applied haptic technology was developed, and the cylindrical-object grasping force measuring device sends data to the rehabilitation evaluating system applied haptic technology by wireless communication. The grasping force measurement characteristic test using the system was carried out, and it was confirmed that the rehabilitation extent of the patients' paralyzed fingers and normal people fingers can be evaluated.

Impedance Control for Haptic Interface using Parameter Estimation Algorithm

  • Park, Heon;Lee, Sang-Chul;Lee, Soo-Sung;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.119.1-119
    • /
    • 2001
  • Teleoperation enables an operator to manipulate remote objects. One of the main goals in teleoperation researches is to provide the operator with the feeling of the telepresence, being present at the remote site. For these purposes, a master robot must be designed as a bilateral control system that can transmit position/force information to a slave robot and feedback the interaction force. A newly proposed impedance algorithm is applied for the control of a haptic interface that was developed as a master robot. With the movements of the haptic interface for position/for co commands, impedance parameters are varying always. When the impedance parameters between an operator and ...

  • PDF

Network-adaptive Transport Scheme for Transparency of Force-reflecting Teleoperation (힘 반향 원격제어 시스템의 투명성을 위한 네트워크 적응형 전송 기법)

  • Lee, Seok-Hee;Seo, Chang-Hoon;Ryu, Je-Ha;Kim, Jong-Won
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.45-51
    • /
    • 2009
  • In this paper, a transparency analysis and network-adaptive transport scheme are proposed in order to improve transparency of EBA-based force-reflecting teleoperation. EBA guarantees stability of force-reflecting teleoperation over network delay and loss but has limitation that it cannot overcome transparency deterioration of haptic interactions. The proposed transparency analysis quantifies the force feedback distortion caused by network delay and loss. Based on the analysis, the proposed haptic data synchronization and transmission rate control schemes adapt synchronization delay and transmission rate to current network state for more transparent haptic interaction. Through Matlab/Simulink simulations, it is confirmed that the proposed analysis provides an acceptable quantification method about haptic interaction quality and that the proposed haptic data transport scheme effectively improves haptic interaction quality with respect to network delays and losses.

  • PDF

Development of exoskeletal type tendon driven haptic device (텐던 구동방식의 장착형 역/촉감 제시기구의 개발에 관한 연구)

  • 이규훈;최혁렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1285-1288
    • /
    • 1997
  • The basic technology of virtual reality can be described as the cognition of the condition change in virtual world by stimulating the visual, auditory, kinesthetic and tactile sensation. Among these, the kinesthetic and tactile sensation is one of the most important things to recognize the interaction. In this paper, it is addressed the haptic device which help the human feel the sense of the operator, and is designed in modular type to expand for five fingers later. the haptic device is driven by tendon and ultrasonic motors located in the wrist part. Each joint is actuated by coupled tendons and adopts more actrator by one than the number of the joints, called 'N+1 type'. The haptic device adopts metamorphic 4-bar linkage structure and the length of linkages, shape and the location of joint displacement sensor are optimized through the analysis.

  • PDF

Optimized Design of a Planar Haptic Device Using Passive Actuators

  • Kim, Tae-Woo;Cho, Chang-Hyun;Kim, Mun-Sang;Song, Jae-Bok
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1565-1570
    • /
    • 2003
  • Passive Haptic Devices have more benefit than the active in Stability. But Apart from benefits, it shows poor performance in haptic display. The author proposed the passive FME(Force Manipulability Ellipsoid) which can graphically show force generating ability of a passive haptic device. In this paper, performance indexes for the force approximation and pseudo friction cone are obtained with the passive FME and an optimized planar device with the indexes is proposed. Based on the above theory, experiment is conducted.

  • PDF