• Title/Summary/Keyword: Hand Recognition

Search Result 1,046, Processing Time 0.031 seconds

A hand gesture recognition method for an intelligent smart home TV remote control system (스마트 홈에서의 TV 제어 시스템을 위한 손 제스처 인식 방법)

  • Kim, Dae-Hwan;Cho, Sang-Ho;Cheon, Young-Jae;Kim, Dai-Jin
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2007.10c
    • /
    • pp.516-520
    • /
    • 2007
  • This paper presents a intuitive, simple and easy smart home TV remote control system using the hand gesture recognition. Hand candidate regions are detected by cascading policy of the part of human anatomy on the disparity map image, Exact hand region is extracted by the graph-cuts algorithm using the skin color information. Hand postures are represented by shape features which are extracted by a simple shape extraction method. We use the forward spotting accumulative HMMs for a smart home TV remote control system. Experimental results show that the proposed system has a good recognition rate of 97.33 % for TV remote control in real-time.

  • PDF

A Study on Hand-signal Recognition System in 37dimensional Space (3차원 공간상의 수신호 인식 시스템에 대한 연구)

  • 장효영;김대진;김정배;변증남
    • Proceedings of the IEEK Conference
    • /
    • 2002.06c
    • /
    • pp.215-218
    • /
    • 2002
  • Gesture recognitions needed for various applications and is now gaining in importance as one method of enabling natural and intuitive human machine communication. In this paper, we propose a real time hand-signal recognition system in 3-dimensional space performs robust, real-time tracking under varying illumination. As compared with the existing method using classical pattern matching, this system is efficient with respect to speed and also presents more systematic way of defining hand-signals and developing a hand-signal recognition system. In order to verify the proposed method, we developed a virtual driving system operated by hand-signals.

  • PDF

Fast Template Matching for the Recognition of Hand Vascular Pattern (정맥패턴인식을 위한 고속 원형정합)

  • Choi, Kwang-Wook;Choi, Hwan-Soo;Pyo, Kwang-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.532-535
    • /
    • 2003
  • In this paper, we propose a new algorithm that can enhance the speed of template matching of hand vascular pattern person verification or recognition system. Various template matching algorithms have advantages in the matching accuracy, but most of the algorithms suffer from computational burden. To reduce the computational amount, with accuracy maintained, we propose following template matching scenario as follows. firstly, original hand vascular image is re-sampled in order to reduce spatial resolution. Secondly, reconstructed image is projected to vertical and horizontal direction, being converted to two one dimensional (1D) data. Thirdly, converted data is used to estimate spatial discrepancy between stored template image and target image. Finally, matching begins from where the estimated order is highest, and finishes when matching decision function is computed to be over certain threshold. We've applied the proposed algorithm to hand vascular pattern identification application for biometrics, and observed dramatic matching speed enhancement. This paper presents detailed explanation of the proposed algorithm and evaluation results.

  • PDF

A Novel Door Security System using Hand Gesture Recognition (손동작 인식을 이용한 출입 보안 시스템)

  • Cheoi, Kyungjoo;Han, Juchan
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.8
    • /
    • pp.1320-1328
    • /
    • 2016
  • In this paper, we propose a novel security system using hand gesture recognition. Proposed system does not create a password as numbers, but instead, it creates unique yet simple pattern created by user's hand movement. Because of the fact that individuals have different range of hand movement, speed, direction, and size while drawing a pattern with their hands, the system will be able to accurately recognize only the authorized user. To evaluate the performance of our system, various patterns were tested and the test showed a satisfying result.

TextNAS Application to Multivariate Time Series Data and Hand Gesture Recognition (textNAS의 다변수 시계열 데이터로의 적용 및 손동작 인식)

  • Kim, Gi-duk;Kim, Mi-sook;Lee, Hack-man
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.518-520
    • /
    • 2021
  • In this paper, we propose a hand gesture recognition method by modifying the textNAS used for text classification so that it can be applied to multivariate time series data. It can be applied to various fields such as behavior recognition, emotion recognition, and hand gesture recognition through multivariate time series data classification. In addition, it automatically finds a deep learning model suitable for classification through training, thereby reducing the burden on users and obtaining high-performance class classification accuracy. By applying the proposed method to the DHG-14/28 and Shrec'17 datasets, which are hand gesture recognition datasets, it was possible to obtain higher class classification accuracy than the existing models. The classification accuracy was 98.72% and 98.16% for DHG-14/28, and 97.82% and 98.39% for Shrec'17 14 class/28 class.

  • PDF

Virtual Block Game Interface based on the Hand Gesture Recognition (손 제스처 인식에 기반한 Virtual Block 게임 인터페이스)

  • Yoon, Min-Ho;Kim, Yoon-Jae;Kim, Tae-Young
    • Journal of Korea Game Society
    • /
    • v.17 no.6
    • /
    • pp.113-120
    • /
    • 2017
  • With the development of virtual reality technology, in recent years, user-friendly hand gesture interface has been more studied for natural interaction with a virtual 3D object. Most earlier studies on the hand-gesture interface are using relatively simple hand gestures. In this paper, we suggest an intuitive hand gesture interface for interaction with 3D object in the virtual reality applications. For hand gesture recognition, first of all, we preprocess various hand data and classify the data through the binary decision tree. The classified data is re-sampled and converted to the chain-code, and then constructed to the hand feature data with the histograms of the chain code. Finally, the input gesture is recognized by MCSVM-based machine learning from the feature data. To test our proposed hand gesture interface we implemented a 'Virtual Block' game. Our experiments showed about 99.2% recognition ratio of 16 kinds of command gestures and more intuitive and user friendly than conventional mouse interface.

Sign Language Recognition System Using SVM and Depth Camera (깊이 카메라와 SVM을 이용한 수화 인식 시스템)

  • Kim, Ki-Sang;Choi, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.11
    • /
    • pp.63-72
    • /
    • 2014
  • In this paper, we propose a sign language recognition system using SVM and depth camera. Especially, we focus on the Korean sign language. For the sign language system, we suggest two methods, one in hand feature extraction stage and the other in recognition stage. Hand features are consisted of the number of fingers, finger length, radius of palm, and direction of the hand. To extract hand features, we use Distance Transform and make hand skeleton. This method is more accurate than a traditional method which uses contours. To recognize hand posture, we develop the decision tree with the hand features. For more accuracy, we use SVM to determine the threshold value in the decision tree. In the experimental results, we show that the suggested method is more accurate and faster when extracting hand features a recognizing hand postures.

Real-Time Recognition Method of Counting Fingers for Natural User Interface

  • Lee, Doyeob;Shin, Dongkyoo;Shin, Dongil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2363-2374
    • /
    • 2016
  • Communication occurs through verbal elements, which usually involve language, as well as non-verbal elements such as facial expressions, eye contact, and gestures. In particular, among these non-verbal elements, gestures are symbolic representations of physical, vocal, and emotional behaviors. This means that gestures can be signals toward a target or expressions of internal psychological processes, rather than simply movements of the body or hands. Moreover, gestures with such properties have been the focus of much research for a new interface in the NUI/NUX field. In this paper, we propose a method for recognizing the number of fingers and detecting the hand region based on the depth information and geometric features of the hand for application to an NUI/NUX. The hand region is detected by using depth information provided by the Kinect system, and the number of fingers is identified by comparing the distance between the contour and the center of the hand region. The contour is detected using the Suzuki85 algorithm, and the number of fingers is calculated by detecting the finger tips in a location at the maximum distance to compare the distances between three consecutive dots in the contour and the center point of the hand. The average recognition rate for the number of fingers is 98.6%, and the execution time is 0.065 ms for the algorithm used in the proposed method. Although this method is fast and its complexity is low, it shows a higher recognition rate and faster recognition speed than other methods. As an application example of the proposed method, this paper explains a Secret Door that recognizes a password by recognizing the number of fingers held up by a user.

Hand shape recognition based on geometric feature using the convex-hull (Convex-hull을 이용한 기하학적 특징 기반의 손 모양 인식 기법)

  • Choi, In-Kyu;Yoo, Jisang
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.1931-1940
    • /
    • 2014
  • In this paper, we propose a new hand shape recognition algorithm based on the geometric features using the convex-hull from the depth image acquired by Kinect system. Kinect is a camera providing a depth image and user's skeleton information and used for detecting hand region. In the proposed algorithm, hand region is detected in a depth image acquired by Kinect and convex-hull of the region is found. Boundary points caused by noise and unnecessary points for recognition are eliminated in the convex-hull that changes depending on hand shape. Hand shape is recognized by the sum of internal angle of a polygon that is matched with convex-hull reconstructed with selected boundary points. Through experiments, we confirm that proposed algorithm shows high recognition rate not only for five models but also those cases rotated.

Design and implementation of a 3-axis Motion Sensor based SWAT Hand-signal Motion-recognition System (3축 모션 센서 기반 SWAT 수신호 모션 인식 시스템 설계 및 구현)

  • Yun, June;Pyun, Kihyun
    • Journal of Internet Computing and Services
    • /
    • v.15 no.4
    • /
    • pp.33-42
    • /
    • 2014
  • Hand-signal is an effective communication means in the situation where voice cannot be used for expression especially for soldiers. Vision-based approaches using cameras as input devices are widely suggested in the literature. However, these approaches are not suitable for soldiers that have unseen visions in many cases. in addition, existing special-glove approaches utilize the information of fingers only. Thus, they are still lack for soldiers' hand-signal recognition that involves not only finger motions, but also additional information such as the rotation of a hand. In this paper, we have designed and implemented a new recognition system for six military hand-signal motions, i. e., 'ready', 'move', quick move', 'crawl', 'stop', and 'lying-down'. For this purpose, we have proposed a finger-recognition method and motion-recognition methods. The finger-recognition method discriminate how much each finger is bended, i. e., 'completely flattened', 'slightly flattened', 'slightly bended', and 'completely bended'. The motion-recognition algorithms are based on the characterization of each hand-signal motion in terms of the three axes. Through repetitive experiments, our system have shown 91.2% of correct recognition.