• Title/Summary/Keyword: Hand Detecting

Search Result 205, Processing Time 0.03 seconds

Real-time Hand Region Detection and Tracking using Depth Information (깊이정보를 이용한 실시간 손 영역 검출 및 추적)

  • Joo, SungIl;Weon, SunHee;Choi, HyungIl
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.1 no.3
    • /
    • pp.177-186
    • /
    • 2012
  • In this paper, we propose a real-time approach for detecting and tracking a hand region by analyzing depth images. We build a hand model in advance. The model has the shape information of a hand. The detecting process extracts out moving areas in an image, which are possibly caused by moving a hand in front of a camera. The moving areas can be identified by analyzing accumulated difference images and applying the region growing technique. The extracted moving areas are compared against a hand model to get justified as a hand region. The tracking process keeps the track of center points of hand regions of successive frames. For this purpose, it involves three steps. The first step is to determine a seed point that is the closest point to the center point of a previous frame. The second step is to perform region growing to form a candidate region of a hand. The third step is to determine the center point of a hand to be tracked. This point is searched by the mean-shift algorithm within a confined area whose size varies adaptively according to the depth information. To verify the effectiveness of our approach, we have evaluated the performance of our approach while changing the shape and position of a hand as well as the velocity of hand movement.

Hand Gesture Recognition using Optical Flow Field Segmentation and Boundary Complexity Comparison based on Hidden Markov Models

  • Park, Sang-Yun;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.4
    • /
    • pp.504-516
    • /
    • 2011
  • In this paper, we will present a method to detect human hand and recognize hand gesture. For detecting the hand region, we use the feature of human skin color and hand feature (with boundary complexity) to detect the hand region from the input image; and use algorithm of optical flow to track the hand movement. Hand gesture recognition is composed of two parts: 1. Posture recognition and 2. Motion recognition, for describing the hand posture feature, we employ the Fourier descriptor method because it's rotation invariant. And we employ PCA method to extract the feature among gesture frames sequences. The HMM method will finally be used to recognize these feature to make a final decision of a hand gesture. Through the experiment, we can see that our proposed method can achieve 99% recognition rate at environment with simple background and no face region together, and reduce to 89.5% at the environment with complex background and with face region. These results can illustrate that the proposed algorithm can be applied as a production.

Grip Force Control of Myoelectric Signal Driving Type Myoelectric Hand Prosthesis (근전위 신호구동형 전동의수의 파지력 제어)

  • Choi, Gi-Won;Choe, Gyu-Ha;Shin, Woo-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.340-342
    • /
    • 2007
  • This paper presents the grip force control of myoelectric hand prosthesis according to myoelectric signal generated in the human muscle. The control system consist of a controller for driving DC motor, torque sensor for measuring out torque of motor, slip sensor for detecting slip of torque. The experimental results proved the reliability of proposed control system.

  • PDF

Hand Raising Pose Detection in the Images of a Single Camera for Mobile Robot (주행 로봇을 위한 단일 카메라 영상에서 손든 자세 검출 알고리즘)

  • Kwon, Gi-Il
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.4
    • /
    • pp.223-229
    • /
    • 2015
  • This paper proposes a novel method for detection of hand raising poses from images acquired from a single camera attached to a mobile robot that navigates unknown dynamic environments. Due to unconstrained illumination, a high level of variance in human appearances and unpredictable backgrounds, detecting hand raising gestures from an image acquired from a camera attached to a mobile robot is very challenging. The proposed method first detects faces to determine the region of interest (ROI), and in this ROI, we detect hands by using a HOG-based hand detector. By using the color distribution of the face region, we evaluate each candidate in the detected hand region. To deal with cases of failure in face detection, we also use a HOG-based hand raising pose detector. Unlike other hand raising pose detector systems, we evaluate our algorithm with images acquired from the camera and images obtained from the Internet that contain unknown backgrounds and unconstrained illumination. The level of variance in hand raising poses in these images is very high. Our experiment results show that the proposed method robustly detects hand raising poses in complex backgrounds and unknown lighting conditions.

Hand Region Tracking and Fingertip Detection based on Depth Image (깊이 영상 기반 손 영역 추적 및 손 끝점 검출)

  • Joo, Sung-Il;Weon, Sun-Hee;Choi, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.8
    • /
    • pp.65-75
    • /
    • 2013
  • This paper proposes a method of tracking the hand region and detecting the fingertip using only depth images. In order to eliminate the influence of lighting conditions and obtain information quickly and stably, this paper proposes a tracking method that relies only on depth information, as well as a method of using region growing to identify errors that can occur during the tracking process and a method of detecting the fingertip that can be applied for the recognition of various gestures. First, the closest point of approach is identified through the process of transferring the center point in order to locate the tracking point, and the region is grown from that point to detect the hand region and boundary line. Next, the ratio of the invalid boundary, obtained by means of region growing, is used to calculate the validity of the tracking region and thereby judge whether the tracking is normal. If tracking is normal, the contour line is extracted from the detected hand region and the curvature and RANSAC and Convex-Hull are used to detect the fingertip. Lastly, quantitative and qualitative analyses are performed to verify the performance in various situations and prove the efficiency of the proposed algorithm for tracking and detecting the fingertip.

A Study on Online Real-Time Strategy Game by using Hand Tracking in Augmented Reality

  • Jeon, Gwang-Ha;Um, Jang-Seok
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.12
    • /
    • pp.1761-1768
    • /
    • 2009
  • In this paper, we implemented online real time strategy game using hand as the mouse in augmented reality. Also, we introduced the algorithm for detecting hand direction, finding fingertip of the index finger and counting the number of fingers for interaction between users and the virtual objects. The proposed method increases the reality of the game by combining the real world and the virtual objects. Retinex algorithm is used to remove the effect of illumination change. The implementation of the virtual reality in the online environment enables to extend the applicability of the proposed method to the areas such as online education, remote medical treatment, and mobile interactive games.

  • PDF

Detection of Red Tide Patches using AVHRR and Landsat TM data (AVHRR과 Landsat TM 자료를 이용한 적조 패취 관측)

  • Jeong, Jong-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.10 no.1
    • /
    • pp.1-8
    • /
    • 2001
  • Detection of red tides by satellite remote sensing can be done either by detecting enhanced level of chlorophyll pigment or by detecting changes in the spectral composition of pixels. Using chlorophyll concentration, however, is not effective currently due to the facts: 1) Chlorophyll-a is a universal pigment of phytoplankton, and 2) no accurate algorithm for chlorophyll in case 2 water is available yet. Here, red band algorithm, classification and PCA (Principal Component Analysis) techniques were applied for detecting patches of Cochlodinium polykrikoides red tides which occurred in Korean waters in 1995. This dinoflagellate species appears dark red due to the characteristic pigments absorbing lights in the blue and green wavelength most effectively. In the satellite image, the brightness of red tide pixels in all the three visible bands were low making the detection difficult. Red band algorithm is not good for detecting the red tide because of reflectance of suspended sediments. For supervised classification, selecting training area was difficult, while unsupervised classification was not effective in delineating the patches from surrounding pixels. On the other hand, PCA gave a good qualitative discrimination on the distribution compared with actual observation.

  • PDF

Hand Tracking and Hand Gesture Recognition for Human Computer Interaction

  • Bai, Yu;Park, Sang-Yun;Kim, Yun-Sik;Jeong, In-Gab;Ok, Soo-Yol;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.2
    • /
    • pp.182-193
    • /
    • 2011
  • The aim of this paper is to present the methodology for hand tracking and hand gesture recognition. The detected hand and gesture can be used to implement the non-contact mouse. We had developed a MP3 player using this technology controlling the computer instead of mouse. In this algorithm, we first do a pre-processing to every frame which including lighting compensation and background filtration to reducing the adverse impact on correctness of hand tracking and hand gesture recognition. Secondly, YCbCr skin-color likelihood algorithm is used to detecting the hand area. Then, we used Continuously Adaptive Mean Shift (CAMSHIFT) algorithm to tracking hand. As the formula-based region of interest is square, the hand is closer to rectangular. We have improved the formula of the search window to get a much suitable search window for hand. And then, Support Vector Machines (SVM) algorithm is used for hand gesture recognition. For training the system, we collected 1500 hand gesture pictures of 5 hand gestures. Finally we have performed extensive experiment on a Windows XP system to evaluate the efficiency of the proposed scheme. The hand tracking correct rate is 96% and the hand gestures average correct rate is 95%.

Dynamic Hand Gesture Recognition using Guide Lines (가이드라인을 이용한 동적 손동작 인식)

  • Kim, Kun-Woo;Lee, Won-Joo;Jeon, Chang-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.5
    • /
    • pp.1-9
    • /
    • 2010
  • Generally, dynamic hand gesture recognition is formed through preprocessing step, hand tracking step and hand shape detection step. In this paper, we present advanced dynamic hand gesture recognizing method that improves performance in preprocessing step and hand shape detection step. In preprocessing step, we remove noise fast by using dynamic table and detect skin color exactly on complex background for controling skin color range in skin color detection method using YCbCr color space. Especially, we increase recognizing speed in hand shape detection step through detecting Start Image and Stop Image, that are elements of dynamic hand gesture recognizing, using Guideline. Guideline is edge of input hand image and hand shape for comparing. We perform various experiments with nine web-cam video clips that are separated to complex background and simple background for dynamic hand gesture recognition method in the paper. The result of experiment shows similar recognition ratio but high recognition speed, low cpu usage, low memory usage than recognition method using learning exercise.

On-line dynamic hand gesture recognition system for the korean sign language (KSL) (한글 수화용 동적 손 제스처의 실시간 인식 시스템의 구현에 관한 연구)

  • Kim, Jong-Sung;Lee, Chan-Su;Jang, Won;Bien, Zeungnam
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.34C no.2
    • /
    • pp.61-70
    • /
    • 1997
  • Human-hand gestures have been used a means of communication among people for a long time, being interpreted as streams of tokens for a language. The signed language is a method of communication for hearing impaired person. Articulated gestures and postures of hands and fingers are commonly used for the signed language. This paper presents a system which recognizes the korean sign language (KSL) and translates the recognition results into a normal korean text and sound. A pair of data-gloves are used a sthe sensing device for detecting motions of hands and fingers. In this paper, we propose a dynamic gesture recognition mehtod by employing a fuzzy feature analysis method for efficient classification of hand motions, and applying a fuzzy min-max neural network to on-line pattern recognition.

  • PDF