Abstract
This paper proposes a method of tracking the hand region and detecting the fingertip using only depth images. In order to eliminate the influence of lighting conditions and obtain information quickly and stably, this paper proposes a tracking method that relies only on depth information, as well as a method of using region growing to identify errors that can occur during the tracking process and a method of detecting the fingertip that can be applied for the recognition of various gestures. First, the closest point of approach is identified through the process of transferring the center point in order to locate the tracking point, and the region is grown from that point to detect the hand region and boundary line. Next, the ratio of the invalid boundary, obtained by means of region growing, is used to calculate the validity of the tracking region and thereby judge whether the tracking is normal. If tracking is normal, the contour line is extracted from the detected hand region and the curvature and RANSAC and Convex-Hull are used to detect the fingertip. Lastly, quantitative and qualitative analyses are performed to verify the performance in various situations and prove the efficiency of the proposed algorithm for tracking and detecting the fingertip.
본 논문에서는 깊이 영상만을 이용하여 손 영역 추적 및 손 끝점 검출 방법을 제안한다. 조명 조건의 영향을 제거하고 빠르고 안정적인 정보 획득을 위해 깊이 정보만을 이용하는 추적 방법을 제안하고, 영역 확장 방법을 통해 추적 과정 중에 발생할 수 있는 오류에 대한 판단 방법과 다양한 제스처 인식에 응용이 가능한 손 끝점 검출 방법을 제안한다. 먼저 추적점을 찾기 위해 중심점 전이 과정을 통해 최근접점을 찾고 그 점으로부터 영역 확장을 통해 손 영역과 경계선을 검출한다. 그리고 영역 확장을 통해 획득한 무효경계선의 비율을 이용하여 추적영역에 대한 신뢰도를 계산함으로써 정상 추적 여부를 판단한다. 정상적인 추적인 경우, 검출된 손 영역으로부터 윤곽선을 추출하고 곡률 및 RANSAC, 컨벡스 헐(Convex-Hull)을 이용하여 손 끝점을 검출한다. 마지막으로 성능 검증을 위해 다양한 상황에 따른 정량적, 정성적 분석을 통해 제안하는 추적 및 손 끝점 검출 알고리즘의 효율성을 입증한다.