• Title/Summary/Keyword: Hall-Effect Thruster

Search Result 14, Processing Time 0.017 seconds

Development of Hall-effect Thruster for Orbit Correction and Transfer of Small Satellites (소형위성의 궤도천이 및 보정을 위한 홀 추력기의 설계)

  • Seon, Jong-Ho;Kang, Seong-Min;Kim, Yon-Ho;Chun, Eun-Yong;Choe, Won-Ho;Lee, Jong-Sub;Seo, Mi-Hui
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.5
    • /
    • pp.490-495
    • /
    • 2009
  • A small Hall-effect thruster with a thrust range near 10 mN and a specific impulse of about 1500 s has been designed to control or maintain the orbits of small satellites. The thruster system consists of a hall-effect thruster head, a power processing unit and a Xenon (Xe) gas feed system. The total mass, the consumed electric power and the efficiency of the thruster are approximately 10 kg, 300W and 30%, respectively. Analyses results that support the selection of the thruster for small satellites are provided along with a brief description of the thruster system.

Design Space Exploration of the Hall Effect Thruster for Conceptual Design (홀추력기 개념 설계를 위한 설계 공간 탐색)

  • Kwon, Ky-Beom
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.12
    • /
    • pp.1133-1140
    • /
    • 2011
  • Current design process for the Hall effect thruster has relied on expensive experimental method based on the limited historical data. In this study, a proper design space for the Hall effect thruster is chosen and associated design space exploration is conducted based on a recently proposed numerical method in order to improve current design process. According to the results of the design space exploration, performance envelope is determined for the given design space and the correlations between performance metrics are analyzed. Further analysis shows that main factors in performances for the Hall effect thruster are the anode mass flow rate and the discharge voltage.

Study on Anomalous Electron Diffusion in the Hall Effect Thruster

  • Kwon, Kybeom;Walker, Mitchell L.R.;Mavris, Dimitri N.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.320-334
    • /
    • 2014
  • Over the last two decades, numerous experimental and numerical efforts have examined physical phenomena in plasma discharge devices. The physical mechanisms that govern the anomalous electron diffusion from the cathode to the anode in the Hall Effect Thruster (HET) are not fully understood. This work used 1-D numerical method to improve our understanding and gain insight into the effect of the anomalous electron diffusion in the HET. To this end, numerical solutions are compared with various experimental HET performance measurements and the effects of anomalous electron diffusion are analyzed. The relationships between the anomalous electron diffusion and important parameters of the HET are also studied quantitatively. The work identifies the cathode mass flow rate fraction, radial magnetic field distribution, and discharge voltage as significant factors that affect anomalous electron diffusion. Additionally, the study demonstrates a computational process to determine the radial magnetic field distribution required to achieve specific thruster performance goals.

Orbit Evolution Analysis of DubaiSat-2 using Hall-effect Thruster (홀 추력기를 이용한 두바이셋-2 위성의 궤도변화 분석)

  • Kim, Eun-Hyouek;Kim, Youn-Ho;Park, Jong-Soo;Koh, Dong-Wook;Jeong, Yun-Hwang;Lee, Hyun-Woo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.4
    • /
    • pp.377-386
    • /
    • 2015
  • DubaiSat-2 is the first satellite developed in Korea equipped with a hall-effect thruster. In this paper, the performance of the DubaiSat-2 hall-effect thruster is verified by analyzing the orbit information of DubaiSat-2. The preparation and performance of orbit operations during 8 months after launch (2013.11.21., UTC) is emphasized and the effects of solar activity on orbit evolution is analyzed. In particular, the hall-effect thruster's thrust is estimated by analyzing difference between observed orbit evolution and predicted orbit. As a result, the estimated thrust is similar to the ground experiment result of 11 mN. The summarized result in this paper would be important reference to improve the stability and effectiveness of satellite operation during the early operation and normal mission lifetime in case of low Earth orbit satellites.

A VIEW PLASMA MOTION OF HALL EFFECT THRUSTER WITH PARTICLE SIMULATION (입자모사를 통한 HALL EFFECT THRUSTER의 플라즈마 운동 이해)

  • Lee, J.J.;Jeong, S.I.;Choe, W.;Lee, J.S.;Lim, Y.B.;Seo, M.H.;Kim, H.M.
    • Bulletin of the Korean Space Science Society
    • /
    • 2007.10a
    • /
    • pp.139-143
    • /
    • 2007
  • Electric propulsion has become a cost effective and sound engineering solution for many space applications. The success of SMART-1 and MUSES-C developed by European Space Agency (ESA) and Japan Aerospace Exploration Agency (JAXA) each proved that even small spacecraft could accomplish planetary mission with electric propulsion systems. A small electric propulsion system which is Hall effect thruster like SMART-1 is under development by SaTReC and GDPL (Glow Discharge Plasma Lab.) in KAIST for the next microsatellite, STSAT-3. To achieve optimized propulsion system, it is very necessary to understand plasma motions of Hall effect thruster. In this paper, we try to approach comprehensive plasma model with the particle simulation complementary to Particle In Cell (PIC) simulation. We think these two different approaches will help experimenters to optimize Hall effect thruster performances.

  • PDF

A Study on Relationship Between Discharge Voltage and Plasma Characteristics of Hall Thruster Using a Hybrid Model (하이브리드 모델을 이용한 홀 추력기의 방전 전압과 플라즈마 특성 관계 연구)

  • Jung, Gwanyong;Sung, Hong-Gye
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.8
    • /
    • pp.611-620
    • /
    • 2020
  • The effect of discharge voltage on electron mean energy, electric potential, ionization rate, neutral and ion density of Hall thruster was analyzed using a two-dimensional axisymmetric hybrid model. The results of the code developed for this study such as discharge current, thrust, and plasma distribution according to discharge voltage of SPT-100ML Hall thruster were compared by experiments and calculations of other researchers for validation. The results show that the electron mean energy, the ionization rate, and the ion density are increased while the neutral density is decreased as the discharge voltage is increased. The thrust and the discharge current are proportional to the discharge voltage.

Development of Xenon feed system for a 300 W Hall-effect Thruster (300 W급 홀 추력기를 위한 제논연료공급장치 개발)

  • Kim, Youn-Ho;Seon, Jong-Ho;Kang, Seong-Min;Wee, Jung-Hyun;Yoon, Ho-Sung;Choe, Won-Ho;Lee, Jong-Sub;Seo, Mi-Hui
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.419-424
    • /
    • 2009
  • A Xenon feed system has been developed for a 300 W Hall-effect thruster intended for orbit maintenance of small satellite. The system can store about 2 kg of xenon gas at 150 bar and is capable of controlling the mass flow rate of the gas at 0.5 SCCM resolution. The performance of the system is verified with a laboratory experiment. It is confirmed that the operation of the feed system is successful at a pressure level of $1.0{\times}10^{-6}$ torr in the vacuum chamber.

Development of Xenon Feed System for a Hall-Effect Thruster to Space-propulsion Applications (우주추진용 홀방식의 전기추력기를 위한 제논연료공급장치 개발)

  • Kim, Youn-Ho;Kang, Seong-Min;Jung, Yun-Hwang;Seon, Jong-Ho;Wee, Jung-Hyun;Yoon, Ho-Sung;Choe, Won-Ho;Lee, Jong-Sub;Seo, Mi-Hui
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.1
    • /
    • pp.84-89
    • /
    • 2011
  • A Xenon Feed System (XFS) has been developed for hall-effect thruster to small satellite space-propulsion system applications. The XFS delivers low pressure gas to the Anode and Cathode of thruster head unit from a xenon storage tank. Accurate throttling of the propellant mass flow rate is independently required for each channel of the thruster head unit. The mass flow rate to each channel is controlled using the accumulator tank pressure regulation through a micron orifice and isolation valve. This paper discusses the Xenon Feed System design including the component selections, performance estimation and functional test.

Effect of Sheath Structure on Operating Stability in an Anode Layer Thruster

  • Yasui, Shinsuke;Yamamoto, Naoji;Komurasaki, Kimiya;Arakawa, Yoshihiro
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.245-250
    • /
    • 2004
  • The discharge current oscillation has been measured for various hollow anode widths and its axial positions using a 1㎾-class anode layer hall thruster. As a result, there were thresholds of magnetic flux density for stable discharge. The plasma structure inside the hollow anode was numerically analyzed using the fully kinetic 2D3V Particle-in-Cell (PIC) and Direct Simulation Monte Carlo (DSMC) methods. The results reproduced both stable and unstable operation modes. In the stable operation case, which corresponds to the case with low magnetic flux, the plasma penetrated into the hollow anode deeper than the case with higher magnetic flux density case. This suggests that comparably large substantial anode area should contribute to stable operation.

  • PDF

Cathode Power Development of Hall Thruster for Small Satellite using Microwave cathode (마이크로웨이브 음극을 이용한 소형 인공위성의 홀 추력기용 음극전원 개발)

  • Kang, Seokhyun;Choo, Wongyo;Choi, Junku;Jeong, Yunhwang;Kim, Younho;Kang, Seongmin;Kuninaka, Hitoshi;Cha, Hanju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.11
    • /
    • pp.974-980
    • /
    • 2014
  • A power supply of cathode has been developed for hall-effect thruster for small satellite. A microwave cathode has been applied to the electric propulsion system and cathode power is necessary in oder to work securely. Anode current is varied by a flow rate controlled by anode tank pressure. Then cathode current has to be controled in proportion by anode current. So cathode power supply has been designed to offer a current proportional to anode current. Also cathode power has been tuned to work securely for cathode to emit more electron than anode within 0.03A. The function test of cathode power was performed by constructing an equivalent load for anode and cathode. It has been tested in a vacuum chamber in order to ensure a stable operation of the thruster. And it was confirmed that thruster normally has been operated in the space environment after the launch.