DOI QR코드

DOI QR Code

A Study on Relationship Between Discharge Voltage and Plasma Characteristics of Hall Thruster Using a Hybrid Model

하이브리드 모델을 이용한 홀 추력기의 방전 전압과 플라즈마 특성 관계 연구

  • Jung, Gwanyong (Department of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Sung, Hong-Gye (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • Received : 2020.05.04
  • Accepted : 2020.07.27
  • Published : 2020.08.01

Abstract

The effect of discharge voltage on electron mean energy, electric potential, ionization rate, neutral and ion density of Hall thruster was analyzed using a two-dimensional axisymmetric hybrid model. The results of the code developed for this study such as discharge current, thrust, and plasma distribution according to discharge voltage of SPT-100ML Hall thruster were compared by experiments and calculations of other researchers for validation. The results show that the electron mean energy, the ionization rate, and the ion density are increased while the neutral density is decreased as the discharge voltage is increased. The thrust and the discharge current are proportional to the discharge voltage.

이차원 축대칭 하이브리드 모델을 이용하여 홀 추력기의 플라즈마 방전 전압이 전자 평균 에너지, 전위, 이온화율 그리고 중성종 및 이온의 밀도에 미치는 영향을 분석하였다. 본 연구에서 개발된 코드의 검증을 위하여 홀 추력기 SPT-100ML의 방전 전압의 변화에 따른 방전 전류와 추력 및 플라즈마 분포 결과를, 타 연구자들의 실험과 계산 결과와 비교하였다. 결과는 방전 전압이 증가할수록 전자 평균 에너지, 이온화율, 이온의 밀도가 증가하는 반면에 중성종의 밀도가 감소함을 나타내었다. 방전 전압과 추력, 방전 전류는 서로 비례하는 관계를 나타내었다.

Keywords

References

  1. Mazouffre, S., Hallouin, T., Inchingolo, M., Gurciullo, A., Lascombes, P. and Maria, J.-L., "Characterization of Miniature Hall Thruster Plume in the 50-200 W Power Range," Proceeding of 8th European Conference for Aeronautics and Space Sciences (EUCASS), July 2019, pp. 1-12.
  2. Kim, H. L., Kim, S. K. and Won, S. H., "Current Status and Trends of Research and Development on Electric Thruster, Part I: Overseas," Journal of the Korean Society of Propulsion Engineers, Vol. 23, No. 6, 2019, pp. 95-108. https://doi.org/10.6108/KSPE.2019.23.6.095
  3. Lee, E., Kim, Y., Lee, H., Kim, H., Doh, G., Lee, D. and Choe, W., "Scaling Approach for Sub-kilowatt Hall-Effect Thrusters," Journal of Propulsion and Power, Vol. 35, No. 6, 2019, pp. 1073-1079. https://doi.org/10.2514/1.B37424
  4. Lee, S., Kim, H. and Choe, W., "Tailoring of Magnetic Field for Performance Improvement in a Small Hall Thruster Plasma," IEEE Transactions on Plasma Science, Vol. 47, No. 10, 2019, pp. 4670-4676. https://doi.org/10.1109/tps.2019.2935473
  5. Mikellides, I. G., Katz, I., Hofer, R. R., Goebel, D. M., De Grys, K. and Mathers, A., "Magnetic Shielding of the Channel Walls in a Hall Plasma Accelerator," Physics of Plasmas, Vol. 18, No. 3, 2011, pp. 033501. https://doi.org/10.1063/1.3551583
  6. Garrigues, L., Hagelaar, G. J. M., Boniface, C. and Boeuf, J. P., "Anomalous Conductivity and Secondary Electron Emission in Hall Effect Thrusters," Journal of Applied Physics, Vol. 100, No. 12, 2006, pp. 123301. https://doi.org/10.1063/1.2401773
  7. Cheng., S. Y. and Martinez-Sanchez, M., "Hybrid Particle-in-Cell Erosion Modeling of Two Hall Thrusters," Journal of Propulsion and Power, Vol. 24, No. 5, 2008, pp. 988-998.
  8. Komurasaki, K. and Arakawa, Y., "Hall Thruster Performance and Plasma Acceleration Process," Aeronautical and Space Sciences Japan, Vol. 40, No. 465, 1992, pp. 46-53.
  9. Han, D. H., Joe, M. K., Shin, J., Sung, H. G. and Kim, S. K., "Numerical Analysis on Plasma Particles inside Electro-magnetic Field Using Particle-in-cell Method," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 45, No. 11, 2017, pp. 932-938. https://doi.org/10.5139/JKSAS.2017.45.11.932
  10. Cheon, C., "Particle-in-Cell Simulations of Shear-Current-Driven Instability of Ionization Region in Hall Thrusters," Master thesis, Department of Electrical and Computer Engineering, Pusan National University, 2019.
  11. Cho, M. G., Jung, G. and Sung, H-.G., "Performance Parameter Analysis of a Hall Effect Thruster with Modified Bohm Parameter Model," International Journal of Aeronautical and Space Sciences, Vol. 20, No. 2, 2019, pp. 415-422. https://doi.org/10.1007/s42405-018-00139-0
  12. Garrigues, L., Santhosh, S., Grimaud, L. and Mazouffre, S., "Operation of a Low-Power Hall Thruster: Comparison between Magnetically Unshielded and Shielded Configuration," Plasma Sources Science and Technology, Vol. 28, No. 3, 2019, pp. 034003. https://doi.org/10.1088/1361-6595/ab080d
  13. Fife, J. M., "Hybrid-PIC Modeling and Electrostatic Probe Survey of Hall Thrusters," Ph.D. thesis, Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, 1999.
  14. Parra, F. I., Ahedo, E., Fife, J. M. and Martinez-Sanchez, M., "A Two-Dimensional Hybrid Model of the Hall Thruster Discharge," Journal of Applied Physics, Vol. 100, No. 2, 2006, pp. 023304. https://doi.org/10.1063/1.2219165
  15. Bareilles, J., Hagelaar, G. J. M., Garrigues, L., Boniface, C., Boeuf, J. P. and Gascon, N., "Critical assessment of a two-dimensional hybrid Hall thruster model: Comparisons with experiments," Physics of Plasmas Vol. 11, No. 6, 2004, pp. 3035-3046. https://doi.org/10.1063/1.1719022
  16. Bareilles, J., "Modelisation 2D Hybrid d'un Propulseur a Effet Hall pour Satellites," Ph.D. thesis, Centre de Physique des Plasmas et de leurs Applications de Toulouse, Universite Paul Sabatier, 2002.
  17. Hagelaar, G. J. M., Bareilles, J., Garrigues, L. and Boeuf, J. -P., "Two-dimensional model of a stationary plasma thruster," Journal of Applied Physics, Vol. 91, No. 9, 2002, pp. 5592-5598. https://doi.org/10.1063/1.1465125
  18. Birdsall, C. K. and Langdon, A. B., Plasma Physics via Computer Simulation, 1st Ed., McGraw Hill, New York, 1985, pp. 12-15.
  19. Mazouffre, S., Bourgeois, G., Garrigues, L. and Pawelec, E., "A Comprehensive study on the atom flow in the cross-field dischare of a Hall Thruster," Journal of Physics D: Applied Physics, Vol. 44, No. 10, 2011, pp. 105203. https://doi.org/10.1088/0022-3727/44/10/105203
  20. Koo, J., "Hybrid PIC-MCC Computational Modeling of Hall Thrusters," Ph.D. thesis, Aerospace Engineering and Scientific Computing, The University of Michigan, 2005.
  21. Hayashi, M., "Bibliography of Electron and Photon Cross Sections with Atoms and Molecules Published in the 20th Century. Xenon," No. NIFSDATA-079, National Inst. for Fusion Science, 2003.
  22. Kobayashi, A., Fujiki, G., Okaji. A. and Masuoka, T., "Ionization Cross Section Ratios of Rare-Gas Atoms (Ne, Ar, Kr and Xe) by electron impact from threshold to 1keV," Journal of Physics B: Atomic, Molecular and Optical Physics, Vol. 35, No. 9, pp. 2087. https://doi.org/10.1088/0953-4075/35/9/307
  23. Boeuf, J. P. and Garrigues, L., "Low Frequency Oscillations in a Stationary Plasma Thruster," Journal of Applied Phyiscs, Vol. 84, No. 7, 1998, pp. 3541-3554. https://doi.org/10.1063/1.368529
  24. Scharfetter, D. L. and Gummel, H. K., "Large-Signal Analysis of a Silicon Read Diode Oscillator," IEEE Transactions on Electron Devices, Vol. 16, No. 1, 1969, pp. 64-77. https://doi.org/10.1109/T-ED.1969.16566
  25. Hagelaar, G. J. M. and Kroesen, G. M. W., "Speeding Up Fluid Models for Gas Discharges by Implicit Treatment of the Electron Energy Source Term," Journal of Computational Physics, Vol. 159, No. 1, 2000, pp. 1-12. https://doi.org/10.1006/jcph.2000.6445
  26. Grigoryev, Yu. N., Vshivkov, V. A. and Fedoruk, M. P., Numerical "Particle-in-Cell" Methods: Theory and Applications, Walter de Gruyter, Zeist, 2012, pp. 58-64.