• Title/Summary/Keyword: Half-cycle control

Search Result 61, Processing Time 0.025 seconds

Performance Improvement of Zero Voltage Switching PWM Half Bridge DC/DC Converter Using Time Delay Control Method (시간 지연 제어를 이용한 영전압 스위칭 PWM 하프 브릿지 컨버터의 제어 성능 개선)

  • 강정일;정영석;이준영;윤명중
    • Proceedings of the KIPE Conference
    • /
    • 1998.07a
    • /
    • pp.85-89
    • /
    • 1998
  • A switching power stage is a very nonlinear system because it has two or more operation modes in one switching cycle. To model a switching power stage, the state space averaging method has been developed. Though it allows a unified treatment of a large variety of switching power stages, the model it yields is always very nonlinear. So, it is required to linearize the averaged model. But it is well known that a controller for a nonlinear plant designed by the linearization frequently fails in showing satisfactory control performance. Hence it is very natural to try to design a nonlinear controller for a switching power stage. In design of a switching power system, nonlinear control approaches such as adaptive control and fuzzy control have been widely studied so far. In this research, a recently developed control method, time delay control is briefly studied and a design example for a ZVS PWM half bridge converter is given. The performance of the time delay controller is compared to its conventional counterpart, PI controller by computer simulations.

  • PDF

Torque Ripple Minimization in Direct Torque Control of Brushless DC Motor

  • Li, Zhenguo;Zhang, Songfa;Zhou, Shenghai;Ahn, Jin-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1569-1576
    • /
    • 2014
  • This paper mainly proposes a direct torque control strategy to minimize torque ripple in brushless DC (BLDC) motor. BLDC motor has large current and torque ripple when one voltage vector applied in one cycle due to its low inductance. Hence, this paper proposed a hysteresis torque control with PWM mode to control the resultant torque. Moreover, when the direct torque control system is operating during the two-phase half-bridge $120^{\circ}$ conduction mode, large torque ripple in commutation area appears every 120 electrical degree. Based on analyzing the root of torque ripple in detail, lookup tables of switching devices states for new half-bridge modulation mode in the positive and negative reference torque put forwarded. Finally, simulations by MATLAB software and experiment results from DSP are presented to verify the feasibility and effectiveness of the proposed strategy operating in four-quadrant operation.

Application of deep neural networks for high-dimensional large BWR core neutronics

  • Abu Saleem, Rabie;Radaideh, Majdi I.;Kozlowski, Tomasz
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2709-2716
    • /
    • 2020
  • Compositions of large nuclear cores (e.g. boiling water reactors) are highly heterogeneous in terms of fuel composition, control rod insertions and flow regimes. For this reason, they usually lack high order of symmetry (e.g. 1/4, 1/8) making it difficult to estimate their neutronic parameters for large spaces of possible loading patterns. A detailed hyperparameter optimization technique (a combination of manual and Gaussian process search) is used to train and optimize deep neural networks for the prediction of three neutronic parameters for the Ringhals-1 BWR unit: power peaking factors (PPF), control rod bank level, and cycle length. Simulation data is generated based on half-symmetry using PARCS core simulator by shuffling a total of 196 assemblies. The results demonstrate a promising performance by the deep networks as acceptable mean absolute error values are found for the global maximum PPF (~0.2) and for the radially and axially averaged PPF (~0.05). The mean difference between targets and predictions for the control rod level is about 5% insertion depth. Lastly, cycle length labels are predicted with 82% accuracy. The results also demonstrate that 10,000 samples are adequate to capture about 80% of the high-dimensional space, with minor improvements found for larger number of samples. The promising findings of this work prove the ability of deep neural networks to resolve high dimensionality issues of large cores in the nuclear area.

A Study on Annealing Cycle Control Temperature of Hi - CON/2 BAF and HNx BAF (Hi-CON/H2 BAF와 HNx BAF의 소둔사이클 제어온도에 관한 연구)

  • 김문경
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.18 no.1
    • /
    • pp.114-122
    • /
    • 1994
  • A cold temperature control system for the BAF(batch annealing furnace) has been established in order to reduce energy consumption to imrpove productivity and stabilize the properties of products. Therefore we confirmed a relation between annealing cycle time and atmospheric gas, changing annealing cycle time according to BAF temperature with time during heating and actual temperature measurements cold spot during soaking. The results of the temperature variation effect on the batch annealing are as follows. 1) Cooling rate is increasing gradually with increasing atmospheric gas flow, but heating rate is hardly increasing without atmospheric gas component. Heating time is reduced to one half with increasing atmospheric gas flow rate and changing of atmospheric gas component from HNx to Ax gas and annealing cycle time is reduce to 2.7 times. 2) With enlarging the difference between furnace temperature and soaking temperature at the HNx BAF, heating time becomes short, but cooling time is indifferent. 3) If temperature difference of 300.deg. C in the temperature change of cold spot according to the annealing cycle control temperature, Hi-CON/H2BAF is interchanging at each other at 26hours, but HNxBAF at 50 hours. 4) Soaking time at batch annealing cycle determination is made a decision by the input coil width, and soaking time for quality homogenization of 1219 mm width coil must be 2.5 hours longer then that of 914mm width coil for the same coil weight at Hi-CON/H2BAF. But, it is necessary to make 2 hours longer at HNxBAF.

  • PDF

AC-DC Converter Control for Power Factor Correction of Inverter Air Conditioner System (인버터 에어컨 시스템의 역률보상을 위한 AC-DC 컨버터 제어)

  • Park, Gwi-Geun;Choi, Jae-Weon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.154-162
    • /
    • 2007
  • In this paper, we propose a new AC-DC converter control method to comply with harmonics regulation(IEC 61000-3) effective for the inverter system of an air conditioner whose power consumption is less than 2,500W. There are many different ways of AC-DC converter control, but this paper focuses on the converter control method that is adopting an input reactor with low cost silicon steel core to strengthen cost competitiveness of the manufacturer. The proposed control method controls input current every half cycle of the line frequency to get unit power factor and at the same time to reduce switching loss of devices and acoustic noise from reactor. This kind of converter is known as a Partial Switching Converter(PSC). In this study, theoretical analysis of the PSC has been performed using Matlab/Simulink while a 16-bit micro-processor based converter has been used to perform the experimental analysis. In the theoretical analysis, electrical circuit models and equations of the PSC are derived and simulated. In the experiments, micro-processor controls input current to keep the power factor above 0.95 by reducing the phase difference between input voltage and current and at the same time to maintain a reference DC-link voltage against voltage drop which depends on DC-link load. Therefore it becomes possible to comply with harmonic regulations while the power factor is maximized by optimizing the time of current flow through the input reactor for every half cycle of line frequency.

Current - Fed Active AC Power Filter (전류형 능동 교류 전력필터)

  • Park, Min-Ho;Choe, Gyu-Ha;Lee, Keun-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1988.11a
    • /
    • pp.409-413
    • /
    • 1988
  • In this paper a control technique for active power filters is proposed which not only eliminates the harmonic current, but also controls the reactive power at the ac side of PWM inverter-induction motor drive system. Injecting the proposed PWM current enables the harmonic components of orders not greater than the pulse number per half-cycle to be removed completely. It also enables the input power factor to become unity. Theoretical investigations are performed to evaluate the performance of the proposed control technique.

  • PDF

Analysis of Current-Fed Active AC Power Filters (전류형 능동 교류 전력 필터의 해석)

  • Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.6
    • /
    • pp.441-450
    • /
    • 1989
  • A control technique for current-fed filters is proposed which not only eliminates the harmonic current, but also controls the reactive power at the ac sides of PWM inverter-induction motor drive system. Injecting the proposed PWM current enables the harmonic components of orders not greater than the number of pulses per half-cycle to be removed completely. Also it enables the input fundamental power factor to become unity and hence total input power factor can be improved greatly. Digital simulation is performed to investigate the theoretical output characteristics of the current-fed filters by the proposed control technique.

  • PDF

Effect of hCG on TeBG (hCG가 TeBG에 미치는 영향)

  • Sung, Ho-Kyung;Kim, Woo-Gyeum
    • The Korean Journal of Physiology
    • /
    • v.14 no.1
    • /
    • pp.7-13
    • /
    • 1980
  • In the previous experiment, authors have shown that during the latter half of estrous cycle there was an increase in plasma testosterone level in the rats stimulated with hCG. To determine the physiologic significance of elevated plasma testosterone, changes of the plasma concentrations of TeBG and testosterone following hCG stimulation were analyzed in the rats having a regular 5 day cycle. The rats were divided into three groups; the control, the rats stimulated with single hCG on the day of proestrus and stimulated with hCG throughout the entire cycle. Blood samples were obtained once a day for an estrous cycle and analyzed for the binding capacity of TeBG using ammonium sulphate precipitation method and testosterone concentration by means of radioimmunoassay. Followings were the results; 1) There was no significant variation in the binding capacity of TeBG in peripheral blood during the estrous cycle of the control rats. 2) No cyclic variation in the binding capacity of TeBG was observed in the rats stimulated with single hCG on proestrus. although the levels tended to be higher in the rats with stimulation than in the control rats. 3) Continual stimulation of hCG produced a marked increase in the binding capacity of TeBG especially on the day of metaestrus. 4) The changes in the plasma level of testosterone followed the same basic pattern seen in the TeBG binding capacity. 5) From above results, the followings were suggested. a. hCG related increase of the binding capacity of TeBG is probably secondary to a modest increase in estrogen as well. b. hCG related increase of plasma testosterone in female rats is not entirely due to excess production rather in part due to decreased metabolism induced by the rise in TeBG. c. It seems likely that most of elevated testosterone shown in the rat stimulated with hCG is bound to TeBG and only small portion is unbound form which influence cellular activity. It is rather possible that an increase in TeBG could augment estrogen activity.

  • PDF

Analysis of an Interleaved Resonant Converter for High Voltage and High Current Applications

  • Lin, Bor-Ren;Chen, Chih-Chieh
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1632-1642
    • /
    • 2014
  • This paper presents an interleaved resonant converter to reduce the voltage stress of power MOSFETs and achieve high circuit efficiency. Two half-bridge converters are connected in series at high voltage side to limit MOSFETs at $V_{in}/2$ voltage stress. Flying capacitor is used between two series half-bridge converters to balance two input capacitor voltages in each switching cycle. Variable switching frequency scheme is used to control the output voltage. The resonant circuit is operated at the inductive load. Thus, the input current of the resonant circuit is lagging to the fundamental input voltage. Power MOSFETs can be turn on under zero voltage switching. Two resonant circuits are connected in parallel to reduce the current stress of transformer windings and rectifier diodes at low voltage side. Interleaved pulse-width modulation is adopted to decrease the output ripple current. Finally, experiments are presented to demonstrate the performance of the proposed converter.

Fault-tree based reliability analysis for paralleled half-bridge sub-module of HVDC (HVDC 병렬 하프브리지 서브모듈에 대한 고장나무기반의 신뢰성 분석)

  • Kang, Feel-soon;Song, Sung-Geun
    • Journal of IKEEE
    • /
    • v.23 no.4
    • /
    • pp.1218-1223
    • /
    • 2019
  • In HVDC systems, the full-bridge submodule increases the number of components compared to the half-bridge submodule, but the failure-rate can be reduced by securing 100 % redundancy. However, full-bridge submodules require more complex control algorithms to ensure the redundancy and to prevent arm-short with sufficient dead-time. To solve this problem, we analyse the failure-rate of the paralleled half-bridge configuration with the same number of components and 100 % redundancy as the full-bridge submodule. The fault tree analysis (FTA) method is applied to the conventional part failure analysis to reflect the operation risk of the submodule, thereby predicting the life-cycle of the submodule more accurately. To verify the validity, the failure-rate results of the proposed FTA based analysis method are compared with the failure rate obtained by the part failure method.