DOI QR코드

DOI QR Code

Fault-tree based reliability analysis for paralleled half-bridge sub-module of HVDC

HVDC 병렬 하프브리지 서브모듈에 대한 고장나무기반의 신뢰성 분석

  • Kang, Feel-soon (Dept. of Electronics and Control Engineering, Hanbat National University) ;
  • Song, Sung-Geun (Energy conversion research center, Korea Electronics Technology Institute)
  • Received : 2019.12.02
  • Accepted : 2019.12.18
  • Published : 2019.12.31

Abstract

In HVDC systems, the full-bridge submodule increases the number of components compared to the half-bridge submodule, but the failure-rate can be reduced by securing 100 % redundancy. However, full-bridge submodules require more complex control algorithms to ensure the redundancy and to prevent arm-short with sufficient dead-time. To solve this problem, we analyse the failure-rate of the paralleled half-bridge configuration with the same number of components and 100 % redundancy as the full-bridge submodule. The fault tree analysis (FTA) method is applied to the conventional part failure analysis to reflect the operation risk of the submodule, thereby predicting the life-cycle of the submodule more accurately. To verify the validity, the failure-rate results of the proposed FTA based analysis method are compared with the failure rate obtained by the part failure method.

HVDC 시스템에서 풀-브리지 서브 모듈 구조는 하프브리지 서브 모듈에 비해 부품 수가 증가하지만 100 % 여유율 확보가 가능하여 고장률을 크게 줄일 수 있다. 그러나 풀-브리지 서브 모듈은 여유율 보장과 암(arm) 단락 방지를 위한 데드 타임(dead-time)을 확보하기 위해 복잡한 제어 알고리즘이 필요하다. 이 문제를 해결하기 위해 풀-브리지 서브 모듈과 동일한 부품 수와 100 % 여유율을 갖는 병렬 하프브리지 구성의 고장률을 분석한다. 기존의 부품 고장 분석에 고장나무분석 방법을 적용하여 서브 모듈의 동작 위험을 반영함으로써 서브 모듈의 수명주기를 보다 정확하게 예측할 수 있다. 병렬 하프브리지 서브모듈의 타당성 검증을 위해 FTA 기반 분석 방법과 기존의 PCA 기반 방법으로 분석된 고장률을 비교한다.

Keywords

References

  1. S. Yang, A. Bryant, P. Mawby, D. Xiang, L. Ran, and P. Tavner, "An Industry-Based Survey of Reliability in Power Electronic Converters," IEEE Trans. Industry Applications, vol.47, pp. 1441-1451, 2011. DOI: 10.1109/ECCE.2009.5316356
  2. Y. Song and B. Wang, "Survey on Reliability of Power Electronics Systems," IEEE Trans. Power Electronics, vol.28, pp.591-604, 2013. DOI: 10.1109/TPEL.2012.2192503
  3. J. Guo, J. Liang, X. Zhang, P. D. Judge, X. Wang, and T. C. Green, "Reliability Analysis of MMCs Considering Submodule Designs with Individual or Series-Operated IGBTs," IEEE Trans. Power Delivery, vol.32, no.2, pp.666-677, 2017. DOI: 10.1109/TPWRD.2016.2572061
  4. J. Xu, P. Zhao, and C. Zhao, "Reliability Analysis and Redundancy Configuration of MMC With Hybrid Submodule Topologies," IEEE Trans. Power Electronics, vol.31, no.4, pp.2720-2729, 2016. DOI: 10.1109/TPEL.2015.2444877
  5. Y. Dong, H. Yang, W. Li, and X. He, "Neutral-Point-Shift-Based Active Thermal Control for a Modular Multilevel Converter Under a Single-Phaseto-Ground Fault," IEEE Trans. Industial Electronics, vol.66, no.3, pp.2474-2484, 2019. https://doi.org/10.1109/TIE.2018.2833019
  6. Y. D. Wang and B. F. Song, "Overview of system reliability prediction method," Aircraft Design, vol.28, no.1, pp.37-42, 2008. https://doi.org/10.3969/j.issn.1673-4599.2008.01.009
  7. J. Jones and J. Hayes, "A comparison of electronic-reliability prediction models," IEEE Transactions on Reliability, vol.48, no.2, pp.127-134, 1999. DOI: 10.1109/24.784270
  8. D. H. Heo, F. S. Kang, S. G. Song, "Failure-rate Analysis Considering Operational Condition of Half-bridge Submodule in HVDC System," Proc. Int. Sym. on Electrical and Electronics Eng (ISEE), pp.10-12, 2019. DOI: 10.1109/ISEE2.2019.8921368