• Title/Summary/Keyword: Hair regeneration

Search Result 32, Processing Time 0.026 seconds

Biomaterials-assisted spheroid engineering for regenerative therapy

  • Lee, Na-Hyun;Bayaraa, Oyunchimeg;Zechu, Zhou;Kim, Hye Sung
    • BMB Reports
    • /
    • v.54 no.7
    • /
    • pp.356-367
    • /
    • 2021
  • Cell-based therapy is a promising approach in the field of regenerative medicine. As cells are formed into spheroids, their survival, functions, and engraftment in the transplanted site are significantly improved compared to single cell transplantation. To improve the therapeutic effect of cell spheroids even further, various biomaterials (e.g., nano- or microparticles, fibers, and hydrogels) have been developed for spheroid engineering. These biomaterials not only can control the overall spheroid formation (e.g., size, shape, aggregation speed, and degree of compaction), but also can regulate cell-to-cell and cell-to-matrix interactions in spheroids. Therefore, cell spheroids in synergy with biomaterials have recently emerged for cell-based regenerative therapy. Biomaterials-assisted spheroid engineering has been extensively studied for regeneration of bone or/and cartilage defects, critical limb ischemia, and myocardial infarction. Furthermore, it has been expanded to pancreas islets and hair follicle transplantation. This paper comprehensively reviews biomaterials-assisted spheroid engineering for regenerative therapy.

Effect of Seaweed Extract on Hair Growth Promotion in Experimental Study of C57BL/6 Mice (해조류 추출물의 발모효과에 관한 C57BL/6의 쥐 실험연구)

  • Ha, Won Ho;Park, Dae Hwan
    • Archives of Craniofacial Surgery
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • Background: Recently, substances from seaweeds have been widely used in hair growth solutions, and have been proven to be effective. Seaweeds have been documented to possess hair growth activity; however, no report on the effect of seaweed on hair regeneration has been issued to date. In this study, we investigated which exact substance of hair tonic made by JW-bio and our institute shows effects on hair growth by studying the mechanisms of candidate substances. Methods: The study was conducted to investigate the hair restoring effect of domestic natural substances; we categorized the candidate substances as seaweed, cereal, and herbal medicine. Five experimental groups were included in the study as follows: a saline group, a 50% ethanol group, seaweed group, a cereal group, and a herbal medicine group. Results: Three extracts (seaweed, cereal, and herbal medicine) were administered to C57BL/6 mice for two weeks after depilation. Depilated areas were found to be completely covered with fully grown hair, and the hair re-growth score was highest in the seaweed group. Using a hair analysis system, hair characteristics were measured in all groups on days 10 and 14 after depilation. The width and length of hair follicles were largest in the seaweed group. Groups treated with seaweed showed significantly increased gene expression of insulin-like growth factor-1. Groups treated with all the three extracts showed decreased expression of transforming growth factor-${\beta}1$. Conclusion: Findings from our study suggest that seaweeds possess hair-growth effects and may be useful for the treatment of alopecia in the future.

Human umbilical cord blood mesenchymal stem cells engineered to overexpress growth factors accelerate outcomes in hair growth

  • Bak, Dong Ho;Choi, Mi Ji;Kim, Soon Re;Lee, Byung Chul;Kim, Jae Min;Jeon, Eun Su;Oh, Wonil;Lim, Ee Seok;Park, Byung Cheol;Kim, Moo Joong;Na, Jungtae;Kim, Beom Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.5
    • /
    • pp.555-566
    • /
    • 2018
  • Human umbilical cord blood mesenchymal stem cells (hUCB-MSCs) are used in tissue repair and regeneration; however, the mechanisms involved are not well understood. We investigated the hair growth-promoting effects of hUCB-MSCs treatment to determine whether hUCB-MSCs enhance the promotion of hair growth. Furthermore, we attempted to identify the factors responsible for hair growth. The effects of hUCB-MSCs on hair growth were investigated in vivo, and hUCB-MSCs advanced anagen onset and hair follicle neogeneration. We found that hUCB-MSCs co-culture increased the viability and up-regulated hair induction-related proteins of human dermal papilla cells (hDPCs) in vitro. A growth factor antibody array revealed that secretory factors from hUCB-MSCs are related to hair growth. Insulin-like growth factor binding protein-1 (IGFBP-1) and vascular endothelial growth factor (VEGF) were increased in co-culture medium. Finally, we found that IGFBP-1, through the co-localization of an IGF-1 and IGFBP-1, had positive effects on cell viability; VEGF secretion; expression of alkaline phosphatase (ALP), CD133, and ${\beta}-catenin$; and formation of hDPCs 3D spheroids. Taken together, these data suggest that hUCB-MSCs promote hair growth via a paracrine mechanism.

Red ginseng oil promotes hair growth and protects skin against UVC radiation

  • Truong, Van-Long;Keum, Young-Sam;Jeong, Woo-Sik
    • Journal of Ginseng Research
    • /
    • v.45 no.4
    • /
    • pp.498-509
    • /
    • 2021
  • Background: A wide range of environmental factors, such as diseases, nutritional deficiencies, ageing, hormonal imbalances, stress, and ultraviolet (UV) radiation, may affect the structure and function of the skin that covers the entire surface of the human body. In this study, we investigated roles of red ginseng oil (RGO) in enhancing skin functions, including hair growth and skin protection, using mouse models. Methods: For hair growth experiment, shaved dorsal skins of C57BL/6 mice were topically applied with vehicle, RGO, RGO's major compounds, or minoxidil for consecutive 21 days and skin tissues were examined the hair growth promoting capacity. For skin protection experiment, SKH-1 hairless mice were topically applied with vehicle or RGO twice a day for three days prior to exposure to UVC radiation at 20 kJ/cm2. Skin tissues were collected to evaluate skin protective effects of RGO. Results: Topical application of RGO to C57BL/6 mice effectively promoted hair regeneration by inducing early telogen-to-anagen transition and significantly increasing the density and bulb diameter of hair follicles. Major compounds, including linoleic acids and β-sitosterol, contributed to RGO-promoted hair growth. Treatment with RGO as well as its major components upregulated expression of hair growth-related proteins. Furthermore, in SKH-1 hairless mice, RGO had a protective effect against UVC-induced skin damage by inhibiting inflammation and apoptosis, as well as inducing cytoprotective systems. Conclusion: These data suggest that RGO may be a potent agent for improving skin health and thereby preventing and/or treating hair loss and protecting skin against UV radiation.

Protective effect of phloroglucinol against gamma radiation-induced oxidative stress in hair follicles (방사선으로 인한 산화적 손상에서 phloroglucinol의 모낭 보호 효과)

  • Kim, Areum;Bing, So Jin;Cho, Jinhee;Herath, KHINM;Jeon, You-Jin;Lee, Byung-Gul;Park, Jae-Woo;Jee, Youngheun
    • Korean Journal of Veterinary Research
    • /
    • v.56 no.1
    • /
    • pp.29-35
    • /
    • 2016
  • When exposed to gamma-rays, hair follicular cells immediately go through apoptosis, which hampers their rapid differentiation essential for the regeneration of hair. Phloroglucinol (PG) is a phenolic compound of Ecklonia cava, brown algae abundant in Jeju island, Korea. Containing plentiful polyphenols, PG is known for its instructive effects by inhibiting apoptosis, scavenging oxygen radicals, and protecting cells against oxidative stress. In this study, we demonstrate that PG rescues radiosensitive hair follicular cells from gamma radiation-induced apoptosis and DNA damage. To identify protective capacity of PG on hair follicles, we irradiated with 8.5 Gy (1.5 Gy/min) of gamma-rays to the whole body of C57BL/6 mice at day 6 after depilation with or without PG. In mice exposed to radiation, the expression of proapoptotic molecule p53 was downregulated in the skin of PG treated group. On immunohistochemical observation of the skin, PG inhibited the immunoreactivity of p53 and cleaved caspase-3. PG treatment protected hair follicular cells from cell death due to gamma-radiation. Our results suggest that PG presents radioprotective effects by inhibiting apoptosis of radiosensitive hair follicular cells and can protect hair follicular cells from gamma-ray induced damage.

Hair-growth Promoting Effect of Microneedle Roller Therapy (미세침요법의 모발성장효과)

  • Lee, Chang Hyun;Lee, Ji Yeon;Shin, Hyun Jong;Ha, Ki Tae;Seo, Hyung Sik;Jeong, Han Sol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.28 no.1
    • /
    • pp.16-21
    • /
    • 2014
  • Micro needle roller therapy has been used for cosmetic purposes, such as reducing skin winkles and improving elasticity of skin. It is claimed that micro needle roller therapy has potentials for connective tissue regeneration by facilitating collagen synthesis. Therefore, there seems to be a possibility that connective tissue regenerating potential of micro needle roller therapy could influence the hair growth cycle. This study, we investigated the hair growth-promoting effects of micro needle roller therapy. C57BL/6 mice were devided into three groups as follows: normal saline-treated, minoxidil-treated, and micro needle roller therapy-received group. Hair growth activity was evaluated by handscopic and microscopic observations. Sections of dorsal skin were stained with hematoxylin and eosin. Expression of BrdU, FGF, and VEGF was detected by immunohistochemical staining. Micro needle roller therapy enhanced the development of hair follicle during anagen. Immunohistochemical analysis revealed that micro neeld roller therapy incresed the expression of BrdU and FGF in the hair follicles of C57BL/6 mice. Furthermore, micro needle roller therapy upregulated mRNA expression of VEGFR-2, FGF-2, EGF - growth factors that play a central role in hair follicle development during anagen. These results suggest that Micro needle roller therapy can potentially be used for the treatment of alopecia.

Cell Viability and Hair Growth Effect on 3T3-L1 Cells of Ethanol Extract from Calendula officinalis L. Flower, Phellinus linteus Fruit Body and Houttuynia cordata Thunb. Whole Plant (금잔화, 상황, 어성초 에탄올 추출물의 세포독성 평가 및 3T3-L1 세포에 대한 육모 효과)

  • Jin, Seong Woo;Koh, Young Woo;Yun, Kyeong Won;Kim, Kyung Je;Je, Hae Shin;Im, Seung Bin;Kim, Kwang Sang;Kim, Min Sook;Yu, Byung Jo;Seo, Kyoung Sun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.6
    • /
    • pp.404-410
    • /
    • 2017
  • Background: Hair loss related syndromes are increasing due to environmental pollution and stress. Hair care products are mainly prepared by mixing chemicals and natural extracts, such as those obtained from medicinal plants. The purpose of this study was to investigate the effects of 70% ethanol extracts from the flowers of Calendula officinalis, fruit body of Phellinus linteus, and the whole plant of Houttuynia cordata on the growth of CCD-986 cells, hair follicle dermal papilla cells (HFDPC), and 3T3-L1 cells. Methods and Results: All sample extracts at all concentrations, except for that from P. linteus fruit body at $500{\mu}g/m{\ell}$, were cytotoxic to CCD-986 cells. However, none of the sample extracts were cytotoxic to HFDPC. The lipid differentiation of 3T3-L1 cells regulates hair regeneration via secretion of platelet derived growth factor. The 70% ethanol extract of H. cordata whole plant promoted hair growth. Adipogenesis rate significantly increased in a treatment concentration-dependent manner. Conclusions: These results suggest that 70% ethanol extracts of C. officinalis flower, P. linteus fruit body and H. cordata could be used for the development of hair care products.

A Study on Histological Recuperative Effect of Burn Remedies (화상치료제의 조직학적 수복효과)

  • Chi Gyoo Yong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.4
    • /
    • pp.774-781
    • /
    • 2002
  • This study was carried out to test the recuperative effect of 2 types of sample drugs for 3 degree burn. The burn injury was made by iron plate heated in the boiling water. The Sprague Dawley rats were shaven with a razor preliminarily and burned by direct contact method for 10 seconds. The experimental groups were classified with 5 each-normal, control, MEBO ointment, sample A, sample B. The effect of the sample drugs were decided by histological results after 3 week application. The results were as following. The 3 treatment groups recovered the burn injury faster than control group. The recuperative effect precedes about 4-5 days at the time of 15th day and 1 week at the time of 3rd week. The therapeutical procedure of 3 treatment groups was similar with naked eye and with microscopic histology in the 1 st, 2nd and 3rd specimens. So there weren't significant differences in curative effect in 3 treatment groups of this experiment. But a regeneration of hair follicle was noted in Sample B uniquely. These results suggested that 3 burn remedies have similar effect of therpy, but sample B containing yolk sac oil has slightly better effect in part of hair regeneration.

The Localization of Cytokeratin 19 and Vimentin in Sprague Dawley Albino Rat Skin Tissue

  • Kim, Tae Keun;Kim, Yong Joo;Min, Byoung Hoon;Kim, Soo Jin
    • Applied Microscopy
    • /
    • v.44 no.1
    • /
    • pp.15-20
    • /
    • 2014
  • Cytokeratin 19 (CK19) expressed in epidermis of skin, bulge region of hair follicle, outermost layer of outer root sheath and proximal and distal to bulge. Vimentin is a fibrous protein that localized in cytoplasm of fibroblast and forms cytoskeleton to maintain shape of cell and nucleus. In this study, CK19 and vimentin in skin were confirmed with light, fluorescence and transmission electron microscope. As a result, CK19 was localized epidermis, hair follicles, outer root sheath and nucleus of Merkel's cell. However, vimentin was localized some epidermis, dermis, hypodermis and nucleus of Merkel's cell. The role of CK19 is self-renewal and homeostasis in skin. Also, hair follicle regeneration and hair growth is known to be related. It is supposed that required of structural proteins that make up cytoskeleton is increased. Thereby, expression of CK19 is increased. It is considered that vimentin localized in order to stabilize structure of cell and cytoskeleton of fibroblasts. Also, CK19 and vimentin present in nuclei of Merkel's cell, and to act as a fibrous protein that make up end of a nerve fiber present in Merkel's cell and paracrine function of Merkel's cell.

Corneal Formation of the Compound Eye in Pieris rapae L. (배추흰나비 복안의 각막 형성)

  • Kim, Chang-Shik;Kim, Woo-Kap;Kim, Chang-Whan
    • Applied Microscopy
    • /
    • v.24 no.4
    • /
    • pp.98-106
    • /
    • 1994
  • The corneal formation of compound eye of Pieris rapae L., which was mostly made during pupal stage, was morphologically investigated with light microscope, scanning electron microscope and transmission electron microscope. The regeneration of the microvilli were found on the surface membranes of corneagen cells and retinular pigment cells of preommatidium after apolysis pupal cuticle. The microvilli were finally differentiated to corneal nipples of the ommatidium. The corneal cuticle was generated on the superficial layer of the preommatidium from corneagen cells and retinular pigment cells. The corneal process was also formed under the cuticular layer from the corneagen cells. The pore canal was appeared within the cuticular layer and connected with the retinular pigment cell as if the root of interommatidial hair was connected. The interommatidial hair was projected randomly among the ommatidial facets and cornal nipple was arrayed regular on the ommatidial facets. The cornea was convex lens and the refracting power by its convex shape was 4 diopter.

  • PDF