• Title/Summary/Keyword: Hadamard Matrix

Search Result 86, Processing Time 0.021 seconds

Characteristics of Jacket Matrix for Communication Signal Processing (통신신호처리를 위한 Jacket 행렬의 특성(特性))

  • Lee, Moon-Ho;Kim, Jeong-Su
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.103-109
    • /
    • 2021
  • About the orthogonal Hadamard matrix announced by Hadamard in France in 1893, Professor Moon Ho Lee newly defined it as Center Weight Hadamard in 1989 and announced it, and discovered the Jacket matrix in 1998. The Jacket matrix is a generalization of the Hadamard matrix. In this paper, we propose a method of obtaining the Symmetric Jacket matrix, analyzing important properties and patterns, and obtaining the Jacket matrix's determinant and Eigenvalue, and proved it using Eigen decomposition. These calculations are useful for signal processing and orthogonal code design. To analyze the matrix system, compare it with DFT, DCT, Hadamard, and Jacket matrix. In the symmetric matrix of Galois Field, the element-wise inverse relationship of the Jacket matrix was mathematically proved and the orthogonal property AB=I relationship was derived.

The New Block Circulant Hadamard Matrices (새로운 블록순환 Hadamard 행렬)

  • Park, Ju Yong;Lee, Moon Ho;Duan, Wei
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.5
    • /
    • pp.3-10
    • /
    • 2014
  • In this paper we review the typical Toeplitz matrices and block circulant matrices, and propose the a circulant Hadamard matrix which is consisted of +1 and -1, but its structure is different from typical Hadamard matrix. The proposed circulant Hadamard matrix decreases computational complexities to $Nlog_2N$ additions through high speed algorithm compare to original one. This matrix is able to be applied to Massive MIMO channel estimation, FIR filter design, amd signal processing.

On Fast M-Gold Hadamard Sequence Transform (고속 M-Gold-Hadamard 시퀀스 트랜스폼)

  • Lee, Mi-Sung;Lee, Moon-Ho;Park, Ju-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.7
    • /
    • pp.93-101
    • /
    • 2010
  • In this paper we generate Gold-sequence by using M-sequence which is made by two primitive polynomial of GF(2). Generally M-sequence is generated by linear feedback shift register code generator. Here we show that this matrix of appropriate permutation has Hadamard matrix property. This matrix proves that Gold-sequence through two M-sequence and additive matrix of one column has one of major properties of Hadamard matrix, orthogonal. and this matrix show another property that multiplication with one matrix and transpose matrix of this matrix have the result of unit matrix. Also M-sequence which is made by linear feedback shift register gets Hadamard matrix property mentioned above by adding matrices of one column and one row. And high-speed conversion is possible through L-matrix and the S-matrix.

NEW LOWER BOUND OF THE DETERMINANT FOR HADAMARD PRODUCT ON SOME TOTALLY NONNEGATIVE MATRICES

  • Zhongpeng, Yang;Xiaoxia, Feng
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.169-181
    • /
    • 2007
  • Applying the properties of Hadamard core for totally nonnegative matrices, we give new lower bounds of the determinant for Hadamard product about matrices in Hadamard core and totally nonnegative matrices, the results improve Oppenheim inequality for tridiagonal oscillating matrices obtained by T. L. Markham.

Eigenvalues of Non-Sylvester Hadamard Matrices Constructed by Monomial Permutation Matrices (단항순열행렬에 의해 구성된 비실베스터 하다마드 행렬의 고유치)

  • Lee Seung-Rae;No Jong-Seon;Sung Koeng-Mo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.4C
    • /
    • pp.434-440
    • /
    • 2006
  • In this paper, the eigenvalues of various non-Sylvester Hadamard matrices constructed by monomial permutation matrices are derived, which shows the relation between the eigenvalues of the newly constructed matrix and Sylvester Hadamard matrix.

On Jacket Matrices Based on Weighted Hadamard Matrices

  • Lee Moon-Ho;Pokhrel Subash Shree;Choe Chang-Hui;Kim Chang-Joo
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.1
    • /
    • pp.17-27
    • /
    • 2007
  • Jacket matrices which are defined to be $n{\times}n$ matrices $A=(a_{jk})$ over a field F with the property $AA^+=nI_n$ where $A^+$ is the transpose matrix of elements inverse of A,i.e., $A^+=(a_{kj}^-)$, was introduced by Lee in 1984 and are used for signal processing and coding theory, which generalized the Hadamard matrices and Center Weighted Hadamard matrices. In this paper, some properties and constructions of Jacket matrices are extensively investigated and small orders of Jacket matrices are characterized, also present the full rate and the 1/2 code rate complex orthogonal space time code with full diversity.

A Hadamard Matrix Feed Network for a Dual-Beam Forming Array Antenna (두 개의 빔 형성 안테나를 위한 Hadamard 행렬 급전 장치)

  • Kim, Jae-Hee;Jo, Gyu-Young;Park, Wee-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.8
    • /
    • pp.927-932
    • /
    • 2008
  • We propose a novel $4{\times}4$ Hadamard matrix feed network for a $4{\times}1$ array antenna to form a dual beam. If each element of the array is excited following the elements in a row of the Hadamard matrix, a two-lobed antenna beam can be obtained. The angle between the two lobes can be controlled. The Hadamard matrix feed network consists of four $90^{\circ}$ hybrids, a crossover and four $90^{\circ}$ phase shifters. The array, including the Hadamard matrix feed network, was fabricated on a microstip structure. The measured beam directions of the two lobes are $0^{\circ}$, ${\pm}15^{\circ}$, ${\pm}33^{\circ}$, ${\pm}45^{\circ}$ depending on the choice of the input port of the feed network.

A Simple Matrix Factorization Approach to Fast Hadamard Transform (단순한 메트릭스 계승접근에 의한 고속 아다마르 변환)

  • Lee, Moon-Ho
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.1
    • /
    • pp.173-176
    • /
    • 1987
  • This paper presents a simple factorization of the Hadamard matrix which is used to develop a fast algorithm for the Hadamard transform. This matrix decomposition is of the kronecker products of identity matrices and successively lower order Hadamard matrices. This following shows how the Kronecker product can be mathematically defined and efficiently implemented using a factorization matrix methods.

  • PDF

Permutation Algorithm for fast Hadamard Transform (고속하다마드 변환을 위한 치환기법)

  • Nam, Ji-Tak;Park, Jin-Bae;Choi, Yun-Ho;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.616-619
    • /
    • 1997
  • The spectrum-recovery scheme in Hadamard transform spectroscopy is commonly implemented with a fast Hadamard transform (FHT). When the Hadamard or simplex matrix corresponding to the mask does not have the same ordering as the Hadamard matrix corresponding to the FHT, a modification is required. When the two Hadamard matrices are in the same equivalence class, this modification can be implemented as a permutation scheme. This paper investigates permutation schemes for this application. This paper is to relieve the confusion about the applicability of existing techniques, reveals a new, more efficient method: and leads to an extension that allows a permutation scheme to be applied to any Hadamard or simplex matrix in the appropriate equivalence class.

  • PDF

The multidimensional subsampling of reverse jacket matrix of wighted hadamard transform for IMT2000 (IMT2000을 위한 하중 hadamard 변환의 다차원 reverse jacket 매트릭스의 서브샘플링)

  • 박주용;이문호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.11
    • /
    • pp.2512-2520
    • /
    • 1997
  • The classes of Reverse Jacket matrix [RJ]$_{N}$ and the corresponding Restclass Reverse Jacket matrix ([RRJ]$_{N}$) are defined;the main property of [RJ]$_{N}$ is that the inverse matrices of them can be obtained very easily and have a special structure. [RJ]$_{N}$ is derived from the weighted hadamard Transform corresponding to hadamard matrix [H]$_{N}$ and a basic symmertric matrix D. the classes of [RJ]$_{2}$ can be used as a generalize Quincunx subsampling matrix and serveral polygonal subsampling matrices. In this paper, we will present in particular the systematical block-wise extending-method for {RJ]$_{N}$. We have deduced a new orthorgonal matrix $M_{1}$.mem.[RRJ]$_{N}$ from a nonorthogonal matrix $M_{O}$.mem.[RJ]$_{N}$. These matrices can be used to develop efficient algorithms in IMT2000 signal processing, multidimensional subsampling, spectrum analyzers, and signal screamblers, as well as in speech and image signal processing.gnal processing.g.

  • PDF