• Title/Summary/Keyword: Habitat replacement

Search Result 17, Processing Time 0.023 seconds

Evaluation on Replacement Habitat of Two Endangered Species, Aster altaicus var. uchiyamae and Polygonatum stenophyllum Using Habitat Suitability Index (서식지 적합 지수를 이용한 멸종위기식물 단양쑥부쟁이와 층층둥굴레의 대체서식지 평가)

  • Lee, Bo Eun;Kim, Jungwook;Kim, Nam-Il;Kim, Jae Geun
    • Journal of Wetlands Research
    • /
    • v.19 no.4
    • /
    • pp.433-442
    • /
    • 2017
  • As a result of the Four-River Restoration Project in Korea, the habitat of endangered plant species of Aster altaicus var. uchiyamae and Polygonatum stenophyllum, which had been natively grown in the riparian zone of Namhan River, was destroyed and artificial replacement habitats were created. In this study, Habitat Suitability Index (HSI) was used to determine whether the replacement habitats are suitable for each species or not. From October 2015 to July 2016, Habitat Evaluate Procedures (HEP) were conducted on two replacement habitats of A. altaicus var. uchiyamae (Gangcheonsum and Sum-River) and on two replacement habitats of P. stenophyllum (Gangcheonsum and Youngjuk) in the Namhan River watershed. As evaluation parameters for A. altaicus var. uchiyamae habitat, habitat matrix (ratio of unburied gravel), height above the ordinary water level, soil nutrients, and light conditions were selected and for P. stenophyllum habitat, soil texture, light conditions, and coverage of companion species were selected. HSI was applied to evaluate the suitability of each replacement habitat. According to the result of the evaluation, replacement habitats of A. altaicus var. uchiyamae and P. stenophyllum located in Gangcheonsum have relatively high HSI values as 0.839 and 0.846, respectively. On the other hand, replacement habitats of A. altaicus var. uchiyamae in Sum-River and P. stenophyllum in Youngjuk zone have HSI value of 0, indicating unsuitable habitats for these species. This is the first attempt to apply HSI for plant species in Korea and proved the usefulness of HSI on plants.

Development of Habitat Suitability Index for Habitat Restoration of Class I Endangered Wildlife, Cypripedium guttatum Cw. (멸종위기 야생생물 I 급 털복주머니란 서식지 복원을 위한 서식지 적합성 지수(HSI) 개발)

  • Yoon, Young-Jun;Kim, Sun-Ryoung;Jang, Rae-Ha;Han, Seung-Hyun;Lee, Dong-Jin;Shim, Yun-Jin;Park, Yong-Su
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.23 no.4
    • /
    • pp.1-11
    • /
    • 2020
  • This study aimed to develop the HSI (Habitat Suitability Index) model of Cypripedium guttatum. and to verify this model by applying to the candidate sites for replacement habitat. The development of HSI and SI (Suitability Index) model was conducted based on the existing literature, field surveys, and expert opinions for information on ecological habitat characteristics. Seven variables were selected as habitat variables including mean maximum temperature in Jul.-Aug., lighting, slope, altitude, effective soil depth, soil texture, and artificial overexploitation (i.e. protected areas). HSI model was developed for C. guttaum based on these variables. This HSI model showed high applicability to selection and evaluation of replacement habitats for C. guttaum. Our findings could provide the basic information on habitat assessment to prevent the extinction of endangered C. guttatum. However, since there is a limitation that the survey data were insufficient, further field surveys should be conducted on several habitat types to improve the accuracy of the HSI model.

Seagrass (Zostera marina) Transplantation and Monitoring for Replacement Habitat (대체서식지 조성을 위한 거머리말 이식 및 모니터링)

  • Hong, Seong Jae;Choi, Chang Geun
    • Journal of Marine Life Science
    • /
    • v.3 no.1
    • /
    • pp.31-37
    • /
    • 2018
  • We investigated natural habitat of seagrass and created replacement habitat to monitor for restoration of the habitat which is expected to be damaged at Cheonseong harbor in Busan. Depth of water for natural seagrass habitat at Cheonseong harbor was 1.2~3.1 m and the water temperature was 7.4℃, salt concentration was 29.1 psu and pH was 8.05 in January, 2013. The density of seagrass was 167.1±16.4 shoots m-2, the total length was 48.5±18.1 cm, the height of sheath was 9.1±2.8 cm and the width of leaf was 4.8±1.1 cm, respectively. We transplanted in December 2014 and monitored the habitat during 9 months after transplanted. In the beginning, the density of seagrass was decreased to 8.5 shoots patch-1 in January and was increased to 19.0 shoots patch-1 in April. The total height were 73.3±2.9~121.3±6.1 cm, the length of sheath were 9.6±0.6-21.0±1.2 cm, the width of leaf were 5.7±0.1~6.8±0.2 mm. It showed that all values were increased steadily until July and was decreased rapidly in August. Flowering shoot, which was not observed in the beginning of transplanting, started to be spotted in March and was continued to be seen during the monitoring period. We were able to observe seedling of germinated seagrass in seeds in the replacement habitat next year.

A Substitute Habitat Planning for 'Kaloula borealis' Based on Wetlands (습지를 기반으로 하는 맹꽁이 대체서식처 조성 계획)

  • Jung, Young Sun;Park, Mi Ok;Koo, Bon Hak
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.1
    • /
    • pp.1-15
    • /
    • 2013
  • This study was carried out to make a plan and design the substitute habitat for Kaloula borealis by pre-proposed planning model for wildlife based on wetlands. The habitat characteristics and distribution status in study area, Shingi village in Gunpo, Gyeonggi Province, were surveyed and restoration strategies of habitats including conservation, enhancement were established by conservation value assessment, and the substitute habitat needed to replace was selected. One of three potential substitute habitats in the same watershed to the original habitat was selected by suitable site assessment. And finally the substitute habitat for Kaloula borealis was planned by the planning indices, and some adults and tadpoles were captured and released into built substitute.

Microhabitat Analysis of Endangered Species (I), Cobitis choiiwith Rapid Decreases of Population by Environmental Pollution for a Habitat Replacement (환경오염에 의해 급감하는 멸종위기 1급 어종인 미호종개의 대체 서식지 마련을 위한 미소서식지 분석)

  • Kim, Jiyoon;An, Kwangguk
    • Journal of Environmental Impact Assessment
    • /
    • v.23 no.4
    • /
    • pp.271-284
    • /
    • 2014
  • The objectives of this research were to analyse the microhabitat of Cobitis choii which is designated as an endangered fish species (I) and national monument species in Korea (No. 454), and provide valuable information of suitable replacement habitat in the future for a conservation of the population with rapid decreases by environmental pollution. Sampling and microhabitat analysis in three streams such as Baekgok, Yugu and Gap Stream, known as one of the least habitats in Korea showed that the mean number of Cobitis choii observed was 2.6. This result indicated that the richness was too low, so the species conservation was very urgent. Optimal physical microhabitat of the population was determined as environmental conditions with > 60% sand with 1 mm particle size, optimal water depth of 20 - 60 cm in the habitats, and the optimal current velocity of < 0.4 m/s. Under the circumstances of the microhabitat, optimal water volume (discharge) was 0 - 2 m3/s in the each sectional analysis and this reach was mainly composed of the stream section with intermittant slow runs and pools. These microhabitats were largely disturbed by physical modifications of habitat and chemical pollutions due to direct influences of nutrient-rich water inputs from the urban area and intensive agricultural pollutants. For these reasons, optimal habitat replacement are required in the future for the conservation of the species.

Functional Assessment of Gangcheon Replacement Wetland Using Modified HGM (수정 수문지형학적 방법을 적용한 강천 대체습지의 기능평가)

  • Kim, Jungwook;Lee, Bo Eun;Kim, Jae Geun;Oh, Seunghyun;Jung, Jaewon;Lee, Myungjin;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.19 no.3
    • /
    • pp.318-326
    • /
    • 2017
  • Riverine wetlands were reduced and damaged by dredging of rivers and constructing parks in wetlands by Four Rivers Project from 2008 to 2013. Therefore, replacement wetlands were constructed for the compensation of wetland loss by the government. However, It is not enough to manage replacement wetlands. In order to manage the wetlands efficiently, it is necessaty to assess the functions of the wetlands and to manage them according to their functions. Here we performed functional assessments for a replacement wetland called Gangcheon wetland using the modified HGM approach. Hydrological, biogeochemical, animal habitat, and plant habitat functions for the wetland were assessed. To assess the functions, we collected informations for modified HGM approach from the monitored hydrologic data, field survey, published reports and documents for before and after the project, and hydraulic & hydrologic modeling. As the results of the assessment, the hydrological function for the replacement wetland showed 65.5% of the reference wetland, biogeochemical function showed 66.6%, plant habitat function showed 75%, and animal habitat function showed 108.3%. Overall, Gangcheon wetland function after the project was reduced to 78.9% of the function before the project. The decrease in hydrological function is due to the decrease of subsurface storage of water. And the decrease in biogeochemical & pland habitat functions is due to the removal of sandbank around the Gangcheon wetland. To compensate for the reduced function, it is necessary to expand the wetland area and to plant the various vegetation. The modified HGM used in this study can take into account the degree of improvement for replacement wetlands, so it can be used to efficiently manage the replacement wetlands. Also when the wetland is newly constructed, it will be very useful to assess the change of function of the wetland over time.

Ecological Data Collection and Habitat Assessment of Kirengeshoma koreana Nakai (나도승마(Kirengeshoma koreana Nakai) 생태정보 수집 및 서식지 평가)

  • Jang, Rae-Ha;Kim, Sunryoung;Tho, Jae-Hwa;Yoon, Young-Jun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.6
    • /
    • pp.221-234
    • /
    • 2023
  • This study was conducted to develop a habitat assessment system for the endangered wildlife II Kirengeshoma koreana Nakai through in-depth interviews with experts based on field surveys and environmental characteristics through spatial data analysis and literature research. Evaluation factors were selected based on the survey results of 31 variables for 23 K. koreana habitats. Afterwards, the importance and evaluation range for each assessment factor were selected. The selection of survey variables, assessment factors, importance of each factor and assessment range was conducted through in-depth interviews with experts at each stage. As a result, the assessment factors and importance were 16% for precipitation of the wettest month, 10% for vegetation zone, 12% for vegetation type, 10% for crown canopy vitality, 14% for tree layer coverage, 13% for drainage grade, 12% for soil depth, and 13% for distance to stream including dry stream. This study provides basic ecological information and a habitat assessment system for K. koreana habitats. Therefore, it can be used as primary data for preparing an endangered wildlife conservation policy, preparing a habitat improvement plan, and selecting an alternative habitat.

Analysis of the Main Habitat for Siberia Musk Deer (Moschus moschiferus) Restoration in Mt. Odae National Park, Korea (오대산국립공원 지역에 멸종위기종인 사향노루 복원을 위한 주요 서식지 분석에 관한 연구)

  • Park, Yong-Su;Kim, Jong-Taek;Lee, Woo-Shin
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.11 no.4
    • /
    • pp.91-102
    • /
    • 2008
  • This study was conducted to obtain the basic information about Siberia Musk Deer (Moschus moschiferus), and to establish a conservation area for the replacement of Siberia Musk Deer into Mt. Odea National Park, South Korea. We analyzed the main habitat for Siberia Musk Deer restoration in Mt. Odae National Park, Korea. We recorded Siberia Musk Deers' field signs (i.e., bedding sites, feeding areas, feces and tracks), and habitat variables such as nearest distance to the watercourse, trails, slope, aspect, forest type and land cover etc. from Dec. 2004 to Aug. 2007 in Mt. Jiri, Mt. Seorak, and Demilitarized Zone (DMZ). Rocky areas, ridges, mixed coniferous forest (Red pine and Mongolian oak), southern and southeastern slope, elevation of above 800m, and distance from watercourse shorter than 300m etc. were dominant habitat types of Siberia Musk Deer. Based on the significant habitat types, a proper conservation plan should be prepared for the restoration of habitats in order to reintroduce, and to increase the population of Siberia Musk Deer in Mt. Odea National Park, South Korea. Small population size, and limited ecological data are the major constraints for the establishment of conservation areas. Furthermore, other anthropogenic factors including human activities, poaching, and residential area around the park caused the difficulties to qualify as a conservation area. For the successful establishment of conservation area in the future, it is recommended to conduct a comprehensive ecological research, and to survey human disturbances including their impacts on the habitats of Siberia Musk Deer in the Mt. Odea National Park.

Development of Habitat Suitability Index (HSI) Model for Mandarin duck (Aix galericulata) and Great spotted woodpeckers (Dendrocopos major) (도시에 서식하는 원앙과 오색딱다구리의 서식 적합성 지수(HSI) 모델 개발)

  • Park, June-Young;Song, Young-Keun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.24 no.1
    • /
    • pp.37-51
    • /
    • 2021
  • The purpose of this research is to develop the Habitat Suitability Index (HSI) for habitat environments of Aix galericulata (A. galericulata) and Dendrocopos major (D. major), which tend to inhabit urban environments. A. galericulata and D. major are the keystone species representing the ecosystem of wetlands and forests. Based on the analysis of their urban habitat environments, this study selects artificially adjustable levels of the environmental index in order to produce the HSI model, which can be used when either restoring or creating the urban habitats for these species. To develop the HSI, we conducted field surveys at Jungnangcheon Stream, Changgyeonggung, Jangneung, Bangbae Neighborhood Park, Gildong Ecological Park, and Seodalsan Mountain. These surveys were conducted between April and August 2020, and this period includes the breeding season of both A. galericulata and D. major. Based on our findings from the surveys, we conclude that there are six SI factors for A. galericulata. These include (1) the presence of alluvial islands, (2) waterfront vegetation cover rate, (3) type of aquatic plants for food, (4) size of forest patch, (5) type of trees in nearby forests, and (6) connectivity of waterfront and forest. We also conclude that there are five SI factors for D. major, which include (1) size of forest patch, (2) rate of broadleaf trees in forest patches, (3) type of nesting trees, (4) diameter at breast height (DBH) of nesting trees, and (5) density of dead trees. The result of this research can provide future studies with useful guidance when both (1) comparing the habitat suitability of the target species in different environments and (2) restoring or creating habitats for these species.

Developing the Ecological Performance Standard for Replaced Wetlands by Analyzing Reference Wetlands (표준습지 분석을 통한 대체습지의 생태 성능 기준 개발)

  • Koo, Bon-Hak;Jeong, Jin-Yong;Park, Mi-Ok
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.14 no.1
    • /
    • pp.11-22
    • /
    • 2011
  • This study was established to build and suggest the Ecological Performance Standards for replaced wetlands as the mitigation strategies for the construction projects. The request performance and assessment factors and standards were derived by bibliographic review and verified by the field survey for the reference wetlands. And the weights for each factor were derived by AHP(Analytical Hierarchy Process) method. The results are as follows : 1) Assessment factors were induced by in-depth research of many wetland assessment models and benchmarks evaluated ecological functions. This study proposed final 12 assessment factors through ecological specialist and experts interviews added with literature analysis. 2) 10 natural wetlands were selected as Reference Wetlands as the measure to propose assessment factors and assessment criteria. Those reference wetlands are well-conserved inland natural wetlands classified to the one having worthy to conserve (grade "high") according to RAM(Rapid Assessment Method). Reference wetlands chosen by the study are Parksilji, Jeongyangji, Mulkubi, Bawineupkubi, Jilnalneup, Jinchonneup, Doomoso, Haepyung wetland, Whangjeong wetland, and Whapo wetland. The research developed assessment criteria for the performance assessment factors based on several explorations of the reference wetlands. 3) "Requiring performance" of replaced wetlands is defined as "to carry out similar or same ecological functions provided by natural wetlands", in overall. The detailed requiring performances are as follows; ${\bullet}$ to play a role of wildlife habitats ${\bullet}$ to have biological diversity ${\bullet}$ to connect with other ecosystems ${\bullet}$ to provide water environment to perform good ecological functions 4) The assessment factors for required performance are categorized by wildlife habitat function, biological diversity, connectivity of adjacent ecosystem, and water environment. Wildlife habitat category is consisted of wildlife habitat creation, size of replacement wetland, and site suitability. Biological diversity category contains the number of plant species, the number of wildlife species, and number of protected species as the sub-factors. Connectivity of adjacent ecosystem is comprised of wildlife corridor, green network and distance from other ecosystem. Finally, water environment make up with water quality, depth of water body, and shape of waterfront. 5) Finally, every assessment factors were verified and weighted by the AHP methods and the final standards were proposed. The weights of factors of requiring performance suggested as habitat (0.280), connectivity (0.261), diversity (0.260), hydraulic environment (0.199). And those of detailed sub-factors are site suitability (0.118), protected species (0.096), distance to neighbor ecosystem (0.093), habitat creating (0.091), green corridor (0.090) etc.