• 제목/요약/키워드: Haar-wavelet

검색결과 105건 처리시간 0.023초

Selecting Optimal Basis Function with Energy Parameter in Image Classification Based on Wavelet Coefficients

  • Yoo, Hee-Young;Lee, Ki-Won;Jin, Hong-Sung;Kwon, Byung-Doo
    • 대한원격탐사학회지
    • /
    • 제24권5호
    • /
    • pp.437-444
    • /
    • 2008
  • Land-use or land-cover classification of satellite images is one of the important tasks in remote sensing application and many researchers have tried to enhance classification accuracy. Previous studies have shown that the classification technique based on wavelet transform is more effective than traditional techniques based on original pixel values, especially in complicated imagery. Various basis functions such as Haar, daubechies, coiflets and symlets are mainly used in 20 image processing based on wavelet transform. Selecting adequate wavelet is very important because different results could be obtained according to the type of basis function in classification. However, it is not easy to choose the basis function which is effective to improve classification accuracy. In this study, we first computed the wavelet coefficients of satellite image using ten different basis functions, and then classified images. After evaluating classification results, we tried to ascertain which basis function is the most effective for image classification. We also tried to see if the optimum basis function is decided by energy parameter before classifying the image using all basis functions. The energy parameters of wavelet detail bands and overall accuracy are clearly correlated. The decision of optimum basis function using energy parameter in the wavelet based image classification is expected to be helpful for saving time and improving classification accuracy effectively.

Wavelet-based Feature Extraction Algorithm for an Iris Recognition System

  • Panganiban, Ayra;Linsangan, Noel;Caluyo, Felicito
    • Journal of Information Processing Systems
    • /
    • 제7권3호
    • /
    • pp.425-434
    • /
    • 2011
  • The success of iris recognition depends mainly on two factors: image acquisition and an iris recognition algorithm. In this study, we present a system that considers both factors and focuses on the latter. The proposed algorithm aims to find out the most efficient wavelet family and its coefficients for encoding the iris template of the experiment samples. The algorithm implemented in software performs segmentation, normalization, feature encoding, data storage, and matching. By using the Haar and Biorthogonal wavelet families at various levels feature encoding is performed by decomposing the normalized iris image. The vertical coefficient is encoded into the iris template and is stored in the database. The performance of the system is evaluated by using the number of degrees of freedom, False Reject Rate (FRR), False Accept Rate (FAR), and Equal Error Rate (EER) and the metrics show that the proposed algorithm can be employed for an iris recognition system.

Hybrid DCT/DFflWavelet Architecture Based on Jacket Matrix

  • 진주;이문호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.281-282
    • /
    • 2007
  • We address a new representation of DCT/DFT/Wavelet matrices via one hybrid architecture. Based on an element inverse matrix factorization algorithm, we show that the OCT, OFT and Wavelet which based on Haar matrix have the similarrecursive computational pattern, all of them can be decomposed to one orthogonal character matrix and a special sparse matrix. The special sparse matrix belongs to Jacket matrix, whose inverse can be from element-wise inverse or block-wise inverse. Based on this trait, we can develop a hybrid architecture.

  • PDF

스트레스 심전도의 근잡음 제거를 위한 Wavelet Interpolation Filter의 설계 (Design of A Wavelet Interpolation Filter for Elimination of Muscle Artifact in the Stress ECG)

  • 박광리;이경중;이병채;정기삼;윤형로
    • 대한의용생체공학회:의공학회지
    • /
    • 제21권5호
    • /
    • pp.495-503
    • /
    • 2000
  • 스트레스 심전계에서 발생되는 근잡음을 제거하기 위하여 wavelet interpolation filter(WIF)를 설계하였다. WIF는 크게 웨이브렛 변환부와 보간법 적용부로 구성되어 있다. 웨이브렛 변환부는 Haar 웨이브렛을 이용하였으며 심전도 저주파 영역과 고주파 영역으로 분할하는 과정이다. 보간법 적용부에서는 분할되어진 신호 중 A3을 선택하여 신호의 재생 성능을 향상시키기 위하여 보간법을 적용하였다. WIF의 성능을 평가하기 위해서 신호대 잡음비, 재생신호 자승오차 및 표준편차의 파라미터를 이용하였다. 본 실험에서는 MIT/BIH 부정맥 데이터베이스, European ST-T 데이터베이스 및 삼각파형을 이용하여 성능 파라미터를 측정하였다. 결과적으로 WIF는 성능 파라미터에서 기존에 많이 사용되고 있는 평균값 필터, 중간값 필터 및 hard thresholding 방법에 비해 우수함을 알 수 있었다.

  • PDF

이산 웨이블릿 합성 영상을 이용한 철강 후판 검사의 조명 메커니즘에 관한 연구 (A Study on Illumination Mechanism of Steel Plate Inspection Using Wavelet Synthetic Images)

  • 조은덕;김경범
    • 반도체디스플레이기술학회지
    • /
    • 제17권2호
    • /
    • pp.26-31
    • /
    • 2018
  • In this paper, surface defects and typical illumination mechanisms for steel plates are analyzed, and then optimum illumination mechanism is selected using discrete wavelet transform (DWT) synthetic images and discriminant measure (DM). The DWT synthetic images are generated using component images decomposed by Haar wavelet transform filter. The best synthetic image according to surface defects is determined using signal to noise ratio (SNR). The optimum illumination mechanism is selected by applying discriminant measure (DM) to the best synthetic images. The DM is applied using the tenengrad-euclidian function. The DM is evaluated as the degree of contrast using the defect boundary information. The performance of the optimum illumination mechanism is verified by quantitative data and intuitive image looks.

웨이블렛 부밴드의 조인트 모멘트를 이용한 스테그분석 (Steganalysis Using Joint Moment of Wavelet Subbands)

  • 박태희;현승화;김재호;엄일규
    • 대한전자공학회논문지SP
    • /
    • 제48권3호
    • /
    • pp.71-78
    • /
    • 2011
  • 본 논문은 웨이블릿 도메인 상에서 부모와 자식 부밴드간의 비독립성에 기반한 영상 스테그분석 방법을 제안한다. 제안한 방법은 커버 영상과 비밀 메시지가 삽입된 스테고 영상에 대해 3-레벨 Haar UWT 웨이블릿 변환을 수행하여 12개의 부밴드로 분해한 후 부모와 자식 부밴드간의 통계적 의존성을 분석한다. 이러한 통계적 의존성은 비밀 메시지가 삽입된 스테고 영상의 경우 커버 영상과 상당한 차이를 보이므로 커버 및 스테고 영상을 구분하기 위한 특징으로 사용될 수 있다. 따라서 본 논문에서는 분해된 12개의 각 부모와 자식 부밴드간의 조인트 특성 함수에 대해 첫 9차의 통계적 모멘트를 추출함으로써 총 72차의 통계적 조인트 모멘트를 특징 벡터로 사용한다. 추출된 특징 벡터는 MLP(다층 퍼셉트론 신경망) 분류기에 입력되어 커버 영상과 스테고 영상을 학습하고 판별한다. 제안 방법의 성능 평가를 위해 LSB 및 SS, BSS 삽입 방법에 의한 다양한 삽입률의 스테고 영상을 사용하였으며, 실험 결과 제안한 기법은 기존의 기법에 비해 삽입 정보 유무의 검출율을 향상시킬 뿐만 아니라 판별의 정확도가 높음을 확인할 수 있었다.

경량 비디오 코덱을 위한 3D 웨이블릿 코딩 기법 (A 3D Wavelet Coding Scheme for Light-weight Video Codec)

  • 이승원;김성민;박성호;정기동
    • 정보처리학회논문지B
    • /
    • 제11B권2호
    • /
    • pp.177-186
    • /
    • 2004
  • 비디오 압축에 사용되는 움직임 예측은 많은 계산과정을 요구하기 때문에 전체적인 부호기 복잡도를 높이는 단점을 지닌다. 이러한 부호기의 복잡도를 줄이기 위해 3D-WT과 같은 움직임 예측을 사용하지 않는 연구들이 소개되고 있다. 하지만, 기존의 3D-WT 기법들은 부호화를 위한 과도한 메모리 요구사항과 복호를 위한 수신 측의 지연시간이 가장 큰 단점으로 지적되었다. 본 논문에서는 수정된 Haar wavelet filter와 개선된 부호화 알고리즘을 통해서 메모리 사용량과 재생을 위한 지연시간을 최소로 하는 확장 가능한 3D-WT 기법인 FS(Fast playable and Scalable) 3D-WT를 소개한다. 3D-WT 중 가장 개선된 형태인 3D-V 기법과의 실험 결과 3D-V와 거의 비슷한 계산 처리 시간으로 높은 압축률과 수신 측에서의 짧은 지연시간을 보였다.

Three Dimensional Imaging Using Wavelets

  • Lee, Kyeong-Eun
    • Journal of the Korean Data and Information Science Society
    • /
    • 제15권3호
    • /
    • pp.695-706
    • /
    • 2004
  • The use of wavelets in three-dimensional imaging is reviewed with an example. The insufficiencies of direct two-dimensional processing is showed as a major motivating factor behind using wavelets for three-dimensional imaging. Different wavelet algorithms are used, and these are compared with the direct two-dimensional approach as well as with each other.

  • PDF

위치 이동에 무관한 홍채 인식을 위한 웨이블렛 변환 기술 (Wavelet Transform Technology for Translation-invariant Iris Recognition)

  • 임철수
    • 정보처리학회논문지B
    • /
    • 제10B권4호
    • /
    • pp.459-464
    • /
    • 2003
  • 본 논문에서 제안한 위치 이동에 무관한 웨이블렛 변환을 이용한 홍채 인식 방법은 영상 획득 장비에 의해 획득한 사용자의 눈 영상에 대하여 홍채 영역만을 추출하기 위한 전처리를 수행하고 전처리를 거친 홍채 영상에 의하여 사용자의 신원을 식별하는데 있어서 홍채 영상의 기울어짐 및 이동 문제를 해결하였다. 이를 위해서 일반적인 웨이블렛을 사용하는 대신, 위치 이동에 무관한 웨이블렛 변환을 통하여 최적의 특징값을 추출한후, 이를 코드화하여 저장한 후, 비교하여 본인 여부를 식별하였다. 실험결과 제안된 방법으로 생성된 특징 벡터와 기존에 등록된 특징 벡터의 일치도 측정에 있어서 종래의 웨이블렛 변환 홍채 인식 방법보다 오인식률(FAR) 및 오거부율(FRR)이 현저하게 감소하였다.

Human activity recognition with analysis of angles between skeletal joints using a RGB-depth sensor

  • Ince, Omer Faruk;Ince, Ibrahim Furkan;Yildirim, Mustafa Eren;Park, Jang Sik;Song, Jong Kwan;Yoon, Byung Woo
    • ETRI Journal
    • /
    • 제42권1호
    • /
    • pp.78-89
    • /
    • 2020
  • Human activity recognition (HAR) has become effective as a computer vision tool for video surveillance systems. In this paper, a novel biometric system that can detect human activities in 3D space is proposed. In order to implement HAR, joint angles obtained using an RGB-depth sensor are used as features. Because HAR is operated in the time domain, angle information is stored using the sliding kernel method. Haar-wavelet transform (HWT) is applied to preserve the information of the features before reducing the data dimension. Dimension reduction using an averaging algorithm is also applied to decrease the computational cost, which provides faster performance while maintaining high accuracy. Before the classification, a proposed thresholding method with inverse HWT is conducted to extract the final feature set. Finally, the K-nearest neighbor (k-NN) algorithm is used to recognize the activity with respect to the given data. The method compares favorably with the results using other machine learning algorithms.