• Title/Summary/Keyword: Haar-Like

Search Result 148, Processing Time 0.026 seconds

Efficient Facial Blemishes Removal with Face Feature Detection (얼굴 구성요소 검출을 통한 효율적인 얼굴 잡티 제거)

  • Park, Ho-Jun;Cha, Eui-Young
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.07a
    • /
    • pp.55-58
    • /
    • 2016
  • 본 논문은 사람의 얼굴 영상에서 잡티를 제거하는 방법을 제안한다. 먼저 입력받은 영상에서 Haar-like Feature 기반 Adaboost 알고리즘과 색상 정보를 이용하여 얼굴 영역을 검출한다. 검출된 얼굴 영역에서 잡티를 제거하기 위해서는 먼저 눈, 코, 입, 눈썹과 같은 얼굴의 주요부위를 검출하고 이 영역을 제외한 순수 피부 영역에 잡티 검출 알고리즘을 적용해야한다. 사람의 얼굴은 미세하게 명암도 차이가 나는 부분이 많기 때문에 가우시안 스무딩을 적용한 후, 그래프 기반 분할 방법을 사용하여 눈, 입, 눈썹을 분할한다. 코 영역은 각 픽셀에 대해 인접픽셀과의 R 채널의 차이값을 가중치 맵으로 만들고 가중치 맵을 분석하여 영역을 분할한다. 분할된 영역에 사람 얼굴의 기하학적 위치 정보를 이용하여 주요부위를 검출한다. 얼굴의 주요부위를 검출하고 그 부위를 제외한 피부 영역에 잡티 검출 알고리즘을 적용한다. 잡티는 Edge와 색상 정보를 이용하여 검출하고, 잡티주변을 검사하여 잡티가 아닌 깨끗한 피부를 잡티 영역에 복사하여 채워나가는 방식으로 피부 영역을 복원한다.

  • PDF

An Improved License Plate Recognition Technique in Outdoor Image (옥외영상의 개선된 차량번호판 인식기술)

  • Kim, Byeong-jun;Kim, Dong-hoon;Lee, Joonwhoan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.423-431
    • /
    • 2016
  • In general LPR(License Plate Recognition) in outdoor image is not so simple differently from in the image captured from manmade environment, because of geometric shape distortion and large illumination changes. this paper proposes three techniques for LPR in outdoor images captured from CCTV. At first, a serially connected multi-stage Adaboost LP detector is proposed, in which different complementary features are used. In the proposed detector the performance is increased by the Haar-like Adaboost LP detector consecutively connected to the MB-LBP based one in serial manner. In addition the technique is proposed that makes image processing easy by the prior determination of LP type, after correction of geometric distortion of LP image. The technique is more efficient than the processing the whole LP image without knowledge of LP type in that we can take the appropriate color to gray conversion, accurate location for separation of text/numeric character sub-images, and proper parameter selection for image processing. In the proposed technique we use DBN(Deep Belief Network) to achieve a robust character recognition against stroke loss and geometric distortion like slant due to the incomplete image processing.

A Hybrid Approach of Efficient Facial Feature Detection and Tracking for Real-time Face Direction Estimation (실시간 얼굴 방향성 추정을 위한 효율적인 얼굴 특성 검출과 추적의 결합방법)

  • Kim, Woonggi;Chun, Junchul
    • Journal of Internet Computing and Services
    • /
    • v.14 no.6
    • /
    • pp.117-124
    • /
    • 2013
  • In this paper, we present a new method which efficiently estimates a face direction from a sequences of input video images in real time fashion. For this work, the proposed method performs detecting the facial region and major facial features such as both eyes, nose and mouth by using the Haar-like feature, which is relatively not sensitive against light variation, from the detected facial area. Then, it becomes able to track the feature points from every frame using optical flow in real time fashion, and determine the direction of the face based on the feature points tracked. Further, in order to prevent the erroneously recognizing the false positions of the facial features when if the coordinates of the features are lost during the tracking by using optical flow, the proposed method determines the validity of locations of the facial features using the template matching of detected facial features in real time. Depending on the correlation rate of re-considering the detection of the features by the template matching, the face direction estimation process is divided into detecting the facial features again or tracking features while determining the direction of the face. The template matching initially saves the location information of 4 facial features such as the left and right eye, the end of nose and mouse in facial feature detection phase and reevaluated these information when the similarity measure between the stored information and the traced facial information by optical flow is exceed a certain level of threshold by detecting the new facial features from the input image. The proposed approach automatically combines the phase of detecting facial features and the phase of tracking features reciprocally and enables to estimate face pose stably in a real-time fashion. From the experiment, we can prove that the proposed method efficiently estimates face direction.

Face Detection Algorithm for Driver's Gesture Recognition (운전자 제스처 인식을 위한 얼굴 검출 알고리즘)

  • Han, Cheol-Hoon;Yang, Hyun-Chang;Sim, Kwee-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.7-10
    • /
    • 2008
  • 자동차의 수가 점점 증가함에 따라 교통사고도 그 만큼 증가하고 있다. 교통사고의 주요 원인 중 하나가 졸음운전이나 부주의한 운전에 의한 것이다. 따라서 Real-Time으로 운전자의 제스처를 인식하여 졸음운전이나 부주의에 의한 사고를 사전에 예방하여 보다 안전한 운전을 돕는 서비스가 필요시 되고 있다. 본 논문에서는 운전자의 제스처 인식에 전처리 과정으로 운전자의 상반신에 대한 영상데이터에서 Adaboost를 이용하여 복잡한 배경과 다양한 환경에서 강인하게 얼굴 영역을 찾는 알고리즘을 소개한다.

  • PDF

An Improved Approach for 3D Hand Pose Estimation Based on a Single Depth Image and Haar Random Forest

  • Kim, Wonggi;Chun, Junchul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.8
    • /
    • pp.3136-3150
    • /
    • 2015
  • A vision-based 3D tracking of articulated human hand is one of the major issues in the applications of human computer interactions and understanding the control of robot hand. This paper presents an improved approach for tracking and recovering the 3D position and orientation of a human hand using the Kinect sensor. The basic idea of the proposed method is to solve an optimization problem that minimizes the discrepancy in 3D shape between an actual hand observed by Kinect and a hypothesized 3D hand model. Since each of the 3D hand pose has 23 degrees of freedom, the hand articulation tracking needs computational excessive burden in minimizing the 3D shape discrepancy between an observed hand and a 3D hand model. For this, we first created a 3D hand model which represents the hand with 17 different parts. Secondly, Random Forest classifier was trained on the synthetic depth images generated by animating the developed 3D hand model, which was then used for Haar-like feature-based classification rather than performing per-pixel classification. Classification results were used for estimating the joint positions for the hand skeleton. Through the experiment, we were able to prove that the proposed method showed improvement rates in hand part recognition and a performance of 20-30 fps. The results confirmed its practical use in classifying hand area and successfully tracked and recovered the 3D hand pose in a real time fashion.

AN EFFICIENT AND STABLE ALGORITHM FOR NUMERICAL EVALUATION OF HANKEL TRANSFORMS

  • Singh, Om P.;Singh, Vineet K.;Pandey, Rajesh K.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1055-1071
    • /
    • 2010
  • Recently, a number of algorithms have been proposed for numerical evaluation of Hankel transforms as these transforms arise naturally in many areas of science and technology. All these algorithms depend on separating the integrand $rf(r)J_{\upsilon}(pr)$ into two components; the slowly varying component rf(r) and the rapidly oscillating component $J_{\upsilon}(pr)$. Then the slowly varying component rf(r) is expanded either into a Fourier Bessel series or various wavelet series using different orthonormal bases like Haar wavelets, rationalized Haar wavelets, linear Legendre multiwavelets, Legendre wavelets and truncating the series at an optimal level; or approximating rf(r) by a quadratic over the subinterval using the Filon quadrature philosophy. The purpose of this communication is to take a different approach and replace rapidly oscillating component $J_{\upsilon}(pr)$ in the integrand by its Bernstein series approximation, thus avoiding the complexity of evaluating integrals involving Bessel functions. This leads to a very simple efficient and stable algorithm for numerical evaluation of Hankel transform.

Object Detection and Tracking with Infrared Videos at Night-time (야간 적외선 카메라를 이용한 객체 검출 및 추적)

  • Choi, Beom-Joon;Park, Jang-Sik;Song, Jong-Kwan;Yoon, Byung-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.2
    • /
    • pp.183-188
    • /
    • 2015
  • In this paper, it is proposed to detect and track pedestrian and analyse tracking performance with nighttime CCTV video. The detection is performed by a cascade classifier with Haar-like feature trained with Adaboost algorithm. Tracking pedestrian is performed by a particle filter. As results of experiments, it is introduced that efficient number of particles and the distributions are applied to track pedestrian at the night-time. Performance of detection and tracking is verified with nighttime CCTV video that is obtained at alleys etc.

Design of RBFNNs Pattern Classifier Realized with the Aid of Face Features Detection (얼굴 특징 검출에 의한 RBFNNs 패턴분류기의 설계)

  • Park, Chan-Jun;Kim, Sun-Hwan;Oh, Sung-Kwun;Kim, Jin-Yul
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.2
    • /
    • pp.120-126
    • /
    • 2016
  • In this study, we propose a method for effectively detecting and recognizing the face in image using RBFNNs pattern classifier and HCbCr-based skin color feature. Skin color detection is computationally rapid and is robust to pattern variation for face detection, however, the objects with similar colors can be mistakenly detected as face. Thus, in order to enhance the accuracy of the skin detection, we take into consideration the combination of the H and CbCr components jointly obtained from both HSI and YCbCr color space. Then, the exact location of the face is found from the candidate region of skin color by detecting the eyes through the Haar-like feature. Finally, the face recognition is performed by using the proposed FCM-based RBFNNs pattern classifier. We show the results as well as computer simulation experiments carried out by using the image database of Cambridge ICPR.

A Speaker Detection System based on Stereo Vision and Audio (스테레오 시청각 기반의 화자 검출 시스템)

  • An, Jun-Ho;Hong, Kwang-Seok
    • Journal of Internet Computing and Services
    • /
    • v.11 no.6
    • /
    • pp.21-29
    • /
    • 2010
  • In this paper, we propose the system which detects the speaker, who is speaking currently, among a number of users. A proposed speaker detection system based on stereo vision and audio is mainly composed of the followings: a position estimation of speaker candidates using stereo camara and microphone, a current speaker detection, and a speaker information acquisition based on a mobile device. We use the haar-like features and the adaboost algorithm to detect the faces of speaker candidates with stereo camera, and the position of speaker candidates is estimated by a triangulation method. Next, the Time Delay Of Arrival (TDOA) is estimated by the Cross Power Spectrum Phase (CPSP) analysis to find the direction of source with two microphone. Finally we acquire the information of the speaker including his position, voice, and face by comparing the information of the stereo camera with that of two microphone. Furthermore, the proposed system includes a TCP client/server connection method for mobile service.

Study of Fast Face Detection in Video frames compressed by advanced CODEC (향상된 코덱으로 압축된 프레임에서 고속 얼굴 검출 기법 연구)

  • Yoon, So-Jeong;Yoo, Sung-Geun;Eom, Yumie
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2014.06a
    • /
    • pp.254-257
    • /
    • 2014
  • Recently, various applications using real-time face detection have been developed as face recognition technology and hardware grows. While network service is developing and video instruments costs lower, it is needed that smart surveillance camera and service using network camera based on IP and face detection technology. However, videos should be compressed for reducing network bandwidth and storage capacity in surveillance system. As it requires high-level improvement of system performance when all the compressed frames are processed in a face detection program, fast face detection method is needed. In this paper, not only a fast way of algorithm using Haar like features and adaboost learning and motion information but also an application on broadcast system is suggested.

  • PDF