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AN EFFICIENT AND STABLE ALGORITHM FOR

NUMERICAL EVALUATION OF HANKEL TRANSFORMS

OM P. SINGH∗, VINEET K. SINGH AND RAJESH K. PANDEY

Abstract. Recently, a number of algorithms have been proposed for nu-
merical evaluation of Hankel transforms as these transforms arise natu-
rally in many areas of science and technology. All these algorithms depend
on separating the integrand rf(r)Jυ(pr) into two components; the slowly
varying component rf(r) and the rapidly oscillating component Jυ(pr).
Then the slowly varying component rf(r) is expanded either into a Fourier
Bessel series or various wavelet series using different orthonormal bases like
Haar wavelets, rationalized Haar wavelets, linear Legendre multiwavelets,
Legendre wavelets and truncating the series at an optimal level; or approxi-
mating rf(r) by a quadratic over the subinterval using the Filon quadrature
philosophy. The purpose of this communication is to take a different ap-
proach and replace rapidly oscillating component Jυ(pr) in the integrand by
its Bernstein series approximation, thus avoiding the complexity of evaluat-
ing integrals involving Bessel functions. This leads to a very simple efficient
and stable algorithm for numerical evaluation of Hankel transform.

AMS Mathematics Subject Classification : 41A10, 65R10.
Key words and phrases : Hankel Transform, Bernstein Polynomial, Ran-
dom Noise.

1. Introduction

There are several integral transforms which are frequently used as a tool for
solving numerous scientific problems. It is well known that the Fourier trans-
form (FT) is used to obtain spatial spectrum of optical light [12]. Fourier optics
is widely used in optical instrument design, optical propagation through lenses
and in quadratics graded index mediums. Most classical optical systems like
mirrors or lenses are axially symmetrical devices. In many practical problems,
data are often acquired in such a form that it is desirable to perform a two-
dimensional polar Fourier transform that is a Hankel transform (HT) rather
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than the cartesian forms. So, we transform the cartesian coordinates into the
polar coordinates.
Let f(x, y) be an input field such that it can be separated as f(x, y) = f1(x)f2(y),
where f1 and f2 are independent functions. Then its two-dimensional Fourier

transform f̂ is also separable as the same symmetry property is transposed

through a linear FT. Hence, f̂(u, v) = f̂1(u)f̂2(v).
Changing to the polar coordinates and if f(r, θ) = f(r) is axially symmetrical,
then in [8], it was shown that

f̂(k, ϕ) = 1/2

∫ ∞

0

d(r2)f(r)J0(kr) ≡ F0(k), (1)

which is also axially symmetrical in the Fourier frequency domain, where F0 is
the Hankel transform of order zero. The general Hankel transform pair with the
kernel being Jυ is defined as

Fυ(p) =

∫ ∞

0

rf(r)Jυ(pr) dr, (2)

and HT being self reciprocal, its inverse is given by

f(r) =

∫ ∞

0

pFυ(p)Jυ(pr) dp, (3)

where Jυ(p) is the υ th-order Bessel function of first kind [35].
The Hankel transform arises naturally in the discussion of problems posed in
cylindrical coordinates and hence, as a result of separation of variables, involving
Bessel functions. The Hankel transform is frequently used as a tool for solving
numerous scientific problems. It is widely used in several fields like, elasticity
[19], optics [3,20,28], electromagnetics, seismology [26], astronomy and image
processing [5,6,14,15,17,18,22,36]. The Hankel transform becomes very useful in
analysis of wave fields where it is used in mathematical handling of radiation,
diffraction, and field projection. Recently, it has been utilized to study pseudo-
differential operators. Singh and Pandey [32] used HT of order υ, υ ∈ R to study
a special class of pseudo-differential operator (PDO) (−x−1D)υ, D = d/dx and
proved that the (PDO) is almost an inverse of HT operator hυ in the sense
that hυo(−x−1D)υ(ϕ) = h0(ϕ) over certain Freshet space, thus representing the
PDO as a Fourier-Bessel series. Further, in 1995, Singh[31], using the HT rep-

resentation of the PDO, proved that exp−αx2

, Re α > 0 are the eigenfunctions

and exp−x2/2 is a fixed point of (−x−1D)υ,υ ∈ C.
Several papers have been written to the evaluation of the Hankel transform in
general and the zeroth order in particular. Analytical evaluations of (2) and (3)
are rare and their numerical computations are difficult because of the oscillatory
behavior of the Bessel function and the infinite length of the interval. Since
seminal work by Siegman [30] in 1977, a number of algorithms for the numeri-
cal evaluation of the Hankel transform have been published for both zero-order
[2-4,6,9,14,15,20-22,38] and high-order [1,10,16,23-25,27,37] Hankel transform.
Unfortunately, the efficiency of a method for computing Hankel transform is
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highly dependent on the function to be transformed, and thus it is difficult to
choose the optimal algorithm for given function. In [4], the authors used Filon
quadrature Philosophy to evaluate zero-order Hankel transform. They separated
the integrand into the product of (assumed) slowly varying component and a
rapidly oscillating one (in this case, former is rf(r) and the later is Jυ(pr). This
method works quite well for computing F0(p), for p ≥ 1, but the calculation of
inverse Hankel transform is more difficult, as F0(p) is no longer a smooth func-
tion but a rapidly oscillating one. In 1998, Yu et al. [38] gave another method to
compute zero-order quasi discrete HT by approximating the input function by
a Fourier-Bessel series over a finite integration interval. It lead to a symmetric
transformation matrix for the HT and the IHT that satisfies the discrete form
of the Parseval theorem.
Later in 2004, Guizar-Sicairos et al. [13] obtained a powerful scheme to calculate
the HT of order υ by extending the zero-order HT algorithm of Yu [38] to higher
orders. Their algorithm is based on the orthogonality properties of Bessel func-
tions. Postnikov [27] proposed, for the first time, a novel and powerful method
for computing zero and first order HT by using Haar wavelets.
Refining the idea of Postnikov [27], we [33-34] obtained three efficient algorithms
for numerical evaluation of HT of order υ > −1 using linear Legendre multi-
wavelets, Legendre wavelets and rationalized Haar wavelets which are superior
to the other mentioned algorithms.
All these algorithms depend on separating the integrand rf(r)Jυ(pr) into two
components; the slowly varying components rf(r) and the rapidly oscillating
component Jυ(pr). Then either rf(r) is expanded into various wavelet series
using different orthonormal bases like Haar wavelets, linear Legendre multi-
wavelets, Fourier Bessel series and truncating the series at an optimal level or
approximating rf(r) by a quadratic over the subinterval using the Filon quad-
rature philosophy.
But none of these algorithms were tested for the stability with respect to the
noise in the input field (signal) f(r) when measured experimentally. Thus it is
desirable to have algorithms stable under random noise in the input field. This
is the motivation behind the present work.

In this paper, we take an entirely different approach. Instead of manipulating
the simpler component rf(r), we manipulate the rapidly oscillating part Jυ(pr),
thus avoiding the complexity of evaluating integrals involving Bessel functions.
We use Bernstein polynomials to approximate Jυ(pr) and replace it by its ap-
proximation in (2), thereby getting an efficient and stable algorithm for the
numerical evaluation of the HT of order υ > −1. Test functions with known
analytic HT are used with random noise term εθi added to the input field f(r),
where θi is a uniform random variable with values in [-1, 1], to illustrate the
stability and efficiency of the proposed algorithm.

2. The Bernstein polynomials
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A Bernstein polynomial, named after Sergei Natanovich Bernstein, is a poly-
nomial in the Bernstein form that is a linear combination of Bernstein basis
polynomials.
The Bernstein basis polynomials of degree n are defined by

Bi,n(t) =

(
n

i

)
ti(1− t)n−i, for i = 0, 1, 2, ..., n. (4)

There are (n+1)nth degree Bernstein basis polynomials forming a basis for the
linear space vn - consisting of all polynomials of degree less than or equal to n
in R[x]-the ring of polynomials over the field R. For mathematical convenience,
we usually set Bi.n = 0 if i < 0 or i > n.
Any polynomial B(x) in R[x] may be written as

B(x) =

n∑

i=0

βiBi,n(x), for some n. (5)

Then B(x) is called a polynomial in Bernstein form or Bernstein polynomial of
degree n. The coefficients βi are called Bernstein or Bezier coefficients. But sev-
eral mathematicians call Bernstein basis polynomials Bi,n(x) as the Bernstein
polynomials. We will follow this convention as well. These polynomials have the
following properties:

(i)Bi,n(0) = δi,0 and Bi,n(1) = δi,n, where δ is the Kronecker delta function.

(ii)Bi,n(t) has one root, each of multiplicity i and n − i, at t = 0 and t = 1,
respectively.

(iii)Bi,n(t) ≥ 0 for t ∈ [0, 1] and Bi,n(1− t) = Bn−i,n(t).

(iv)For i 6= 0, Bi,n has a unique local maximum in [0, 1] at t = i/n and the
maximum value iin−n(n− i)n−i

(
n
i

)
.

(v)The Bernstein polynomials form a partition of unity i.e.
∑n

i=0 Bi,n(t) = 1.

(vi)It has a degree raising property in the sense that any of the lower-degree
polynomials (degree < n) can be expressed as a linear combinations of
polynomials of degree n. We have,

Bi,n−1(t) = ((n− i)/n)Bi,n(t) + ((i+ 1)/n)Bi+1,n(t).

(vii) Let f(x) ∈ C[0, 1]- the class of continuous functions on [0,1], then

Bn(f)(x) =

n∑

i=0

f(i/n)Bi,n(x) (6)
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converges tof(x) uniformly on [0,1] as n → ∞.

(viii) Let f(x) ∈ C(k)[0, 1]-the class of k-times differentiable functions with
f (k) continuous, then

∥∥Bn(f)
(k)

∥∥
∞ ≤ (n)k

nk

∥∥f (k)
∥∥
∞ and

∥∥(f)(k) −Bn(f)
(k)

∥∥
∞ → 0 as n → ∞,

where ‖.‖∞ is the sup.norm and (n)k
nk = (1− 0

n )(1− 1
n )...(1− k−1

n ) is an
eigen value of Bn; the corresponding eigen function is a polynomial of
degree k.

3. Outline of the algorithm

The input signal f(r) representing physical fields are either zero or have an
infinitely long decaying tail outside a disk of finite radius R. Hence, in many
practical applications either the signal f(r) has a compact support or for a given

ε > 0 there exists a R > 0 such that

∣∣∣∣
∫ ∞

R

rf(r)Jυ(pr) dr

∣∣∣∣ < ε, which is the case

if f(r) = o(rη), where η < − 3
2 as r → ∞. Therefore, in either case,

F̂υ(p) =

∫ R

0

rf(r)Jυ(pr) dr =

∫ 1

0

rf(r)Jυ(pr) dr, (byscaling) (7)

known as the finite Hankel transform (FHT) is a good approximation of the
HT given by (2). The algorithm is efficient if f decays faster that r−3/2 near
infinity which includes the majority of input signals of physical interest. Writing
rf(r) = g(r) in equation (7),we get

F̂υ(p) =

∫ 1

0

g(r)Jυ(pr) dr. (8)

As Jυ(r) ∈ C[0, 1], using (6), we get

Bn(Jυ)(r) =

n∑

i=0

Jυ(
i

n
)Bi,n(r) → Jυ(r) uniformly as n → ∞. (9)

Replacing Jυ(pr) in (8) by Bn(Jυ)(pr), we get a sequence of iterates

F̂υ,n(p) =

∫ 1

0

g(r)

n∑

i=0

Jυ(
pi

n
)Bi,n(r) dr =

n∑

i=0

Jυ(
pi

n
)

∫ 1

0

g(r)Bi,n(r) dr.
(10)

Note that the integral

∫ 1

0

g(r)Bi,n(r) dr appearing in (10) is easy to evaluate,

as g(r) is the known function rf(r) and Bi,n(r) is a polynomial of degree n. We
have used Mathcad 13 to evaluate (10) and plot the various graphs in Section 4.

These iterates F̂υ,n(p) → F̂υ(p) uniformly as n → ∞.
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Let εn(p) be the associated error when we approximate F̂υ by its nth iterate

F̂υ,n. Thus

εn(p) = F̂υ,n(p)− F̂υ(p).
Let

εn,m(p) = εn(p)− εm(p) = F̂υ,n(p)− F̂υ,m(p). (11)

Therefore, from equations (10) and (11), we obtain

εn,n−1(p) =

∫ 1

0

g(r)[

n∑

i=0

Jυ(
pi

n
)Bi,n(r)−

n−1∑

i=0

Jυ(
pi

n− 1
)Bi,n−1(r)] dr.

(12)

For convenience of calculations, we denote the bracketed expression in (12) by
Tn(r). Now, we use the degree raising property of the Bernstein polynomi-
als to express any lower degree Bernstein polynomials (degree< n) as a linear
combination of Bernstein polynomials of degre n. In particular, any Bernstein
polynomial of degree n− 1 can be written as a linear combination of Bernstein
polynomials of degree n. Using the definition of the Bernstein polynomials and
simple algebraic manipulations, we obtain

Bi,n−1(r) = (
n− i

n
)Bi,n(r) + (

i+ 1

n
)Bi+1,n(r). (13)

Substituting (13) in Tn(r) and simplifying, we get

Tn(r) =

n−1∑

i=1

[(Jυ(
pi

n
)− Jυ(

pi

n− 1
))− i

n
((Jυ(

pi

n− 1
)− Jυ(

p(i− 1)

n− 1
))]Bi,n(r)

(14)

For any ε > 0, from the continuity of Jυ there exist a δ > 0 such that

∣∣∣Jυ(pin )− Jυ(
pi

n−1 )
∣∣∣ < ε

‖g‖∞
and ∣∣∣∣Jυ(

pi

n− 1
)− Jυ(p

i− 1

n− 1
)

∣∣∣∣ <
ε

‖g‖∞
, for n >

P

δ
(15)

where p is restricted to the range [0,P] and ‖g‖∞ is the sup. norm of g defined
as

‖g‖∞ = sup
0≤r≤1

|g(r)| . (16)

Hence,

|Tn(r)| ≤ ε

‖g‖∞
[

n−1∑

i=1

(1− i

n
)Bi,n(r)]. (17)

Substituting (17) in (12), we get

|εn,n−1(p)| ≤ ε

‖g‖∞

∫ 1

0

∣∣∣∣∣g(r)
n−1∑

i=1

(1− i

n
)Bi,n(r) dr

∣∣∣∣∣ ≤
n− 1

2(n+ 1)
ε,

(18)
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since,

∫ 1

0

Bi,n(r) dr =
1

n+ 1
.

As the right side of the inequality in (18) is independent of p, we have

‖εn,n−1‖∞ ≤ n− 1

2(n+ 1)
ε < ε, for n >

P

δ
. (19)

Thus, we see that the iterates F̂υ,n(p) form a Cauchy sequence and hence (19)

establishes the uniform convergence of F̂υ,n(p) to F̂υ(p). Equation (19) gives an
estimate for the correction term at each step of the iterates.

4. Numerical results

In this section we discuss, the implementation of our numerical method and
investigate its accuracy and stability by applying it on numerical examples with
known analytical HT.
In all the examples, the exact data function is denoted by g(r) and the noisy
data function gα(r) is obtained by adding an α random error to g(r) such that
gα(ri) = g(ri) + αθi, where ri = ih, i = 1, 2, ...N, Nh = 20 and θi is a uniform
random variable with values in [-1,1] such that max0≤i≤N |gα(ri)− g(ri)| ≤ α.
The following examples are solved with and without random perturbations to
illustrate the efficiency and stability of our method by choosing three different
values of the random error α as α0 = 0.000, α1 = 0.004 and α2 = 0.0099 and
computing the error Ej(p)= Approximate HT obtained from (10) with random
error αj - the exact HT, j = 0, 1, 2. The various Ej(p)

′s are shown in Figs. 2-3,5-
6,8-9,11-12 and 14-15. Note that the various graphs in the following examples
are plotted by choosing the sample points as p = 0.01(0.01)P , where P = 20 in
Figs. 1-15. We take n = 80 in (10) to get approximate solutions of the numerical
examples given in this section.
We also use the continuous L2 norm in I = [0, P ] to measure errors as well. It
is defined as:

‖f‖2 = (

∫ P

0

|f(r)|2 dr)1/2. (20)

Example 1: Sombrero function

A very important, and often used function, is the Circ function that can be
defined as

Circ(r/a) =

{
1 if r ≤ a,

0 if r > a
. (21)

The zeroth-order HT of Circ(r/a) is the Sombrero function [29], given by

S0(p) = a2 J1(ap)
ap .
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We use (10) to obtain the approximation for the FHT ˆF0(p) of the Circ(r/a)

and compare it with the exact HT S0(p) in Fig 1. Note that S0(p) and ˆF0(p) are
indicated by S0(p) (solid line) and H0(p) (dotted line) in the Fig.1.The effect of
random noises are shown through Figs.2 and 3 where the error E0(p) (without
noise) is compared with the errors E1(p) and E2(p), with different levels of
random noises, respectively.

Example 2:

Let f(r) = (1− r2)1/2, 0 ≤ r ≤ 1,
then,
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Fig.3. Errors 
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Fig.4.The exact transform,
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F1(p) =

{
π

J2
1 (p/2)
2p if 0 < p < ∞,

0 if p = 0
. (22)

Barakat et al. [4], evaluated F1(p) numerically using Filon quadrature philoso-
phy but the associated error is appreciable for p < 1; whereas our method gives
almost zero error in that range. Equation (10) is used to find the approximate
FHT for the problem. The comparison of the approximation H0(p) (dotted line)
with the exact HT F1(p) (solid line) is shown in Fig.4 and the corresponding
error graphs,(E0(p), E1(p)) and (E0(p), E2(p)) in Figs 5 and 6 respectively.

Example 3:
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Let f(r) = 2
π [arccos(r)− r(1− r2)1/2], 0 ≤ r ≤ 1,

then

F0(p) = 2
J2
1 (p/2)

p2
, 0 ≤ p ≤ ∞. [2] (23)

A well known result. The pair (f(r), F0(p)) arises in optical diffraction the-
ory [11]. The function f(r) is the optical transfer function of an aberration-free
optical system with a circular aperture, and F0(p) is the corresponding spread
function.
Barakat et al. [2], evaluated F0(p) numerically using Filon quadrature philoso-
phy but the associated error is again appreciable for p < 1; whereas our method

gives almost zero error in that range. Note that F0(p) and ˆF0(p) are indicated
by F0(p) (solid line) and H0(p) (dotted line) in the Fig.7 and the corresponding
errors (E0(p), E1(p)) and (E0(p), E2(p)) are shown in Figs. 8 and 9 respectively.
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Fig.7.The exact transform,
 )
(
0
 p
F
 ((solid line) and the approximate transform, 
 )
(
0
 p
H
  (dotted
-
 

line)
 


0
 3.33
 6.67
 10
 13.33
 16.67
 20

0.05


0.00833


0.033


0.075


0.12


0.16


0.2


F0
 p
(
 )


H0
 p
(
 )


p


 


Fig.8. Errors 
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Example 4.

In this example, we choose as test function the generalized version of the top-
hat function, f(r) = rυ[H(r)−H(r−a)], a > 0 where H(r) is the step function
given by

H(r) =

{
1 if r ≥ 0,

0 if r < 0
.

Then

Fυ(p) =
Jυ+1(p)

p
. (24)

In [13], authors took a = 1 and υ = 4 for numerical calculations. We take
a = 1, υ = 1/2 and observe that the associated errors with and without random
noises are quite small as shown in Figs. 11 and 12. The comparison of the
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Fig.10.The exact transform,
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approximation with exact transform is shown in Fig.10 where the exact and
approximate transforms are denoted as S1(p) (solid line) and H0(p) (dotted
line) respectively.

Example 5:

Let f(r) = rυ sin(πr
2

4 ), 0 ≤ r ≤ 1, then

Fυ(p) = 1√
2
(π2 )

−υ−1pυ[Uυ+1(
π
2 , p) − Uυ+2(

π
2 , p)] (obtained from [7, p.34

Eq(16)] by putting a = π
4 , b = 1), where Uυ(w, p) is a Lommel’s function of two

variables,
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Fig.11. Errors 
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Fig.12. Errors 
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[(−1)η(
π

2p
)2η(Jυ+2η+1(p)− π

2p
Jυ+2η+2(p))]] as L → ∞. [7, p.428]

(25)

We take υ = 1.5 and show the comparison of the approximation H0(p) (dotted
line) with the exact HT F1.5(p) (solid line) in Fig.13.The corresponding errors
(E0(p), E1(p)) and (E0(p), E2(p)) are shown in Figs 14 and 15 respectively.

5. Error Analysis

The numerical stability property of the algorithm is illustrated in table 1
where the L2 norm of the error is shown as a function of the amount of noise
ε in the data function, for Examples 1- 5. We notice that in all the cases, the
numerical stability of the proposed algorithm is confirmed. Moreover, in the α
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range 0.000 to 0.0099, the continuous error norms are barely sensitive to the
variation in α.

‖Ej‖2 Ex.1. Ex.2. Ex.3. Ex.4. Ex.5.

‖E0‖2 7.924 × 10−3 4.62 × 10−3 3.999 × 10−3 5.675 × 10−3 2.585 × 10−3

‖E1‖2 7.937 × 10−3 4.627 × 10−3 4.004 × 10−3 5.659 × 10−3 2.595 × 10−3

‖E2‖2 7.916 × 10−3 4.671 × 10−3 4.001 × 10−3 5.673 × 10−3 2.64 × 10−3

Table 1: Least squares errors ‖Ej‖2, for j = 0, 1, 2 Exs.1 − 5.

6. Conclusions

Replacing the rapidly oscillating part Jυ(pr) with its approximation by Bern-
stein polynomials avoids the complexity of evaluating integrals involving Bessel
functions. This makes the evaluation of HT integral very simple. From Figs.1-15,
it is obvious that the method is consistent and does not depend on the particular
choice of the input signals. The stability of the proposed algorithm is established
through Figs 2-3, 5-6, 8-9, 11-12, 14-15 and table 1.The accuracy and simplicity
of the algorithm provides it an edge over the others.
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