• Title/Summary/Keyword: HW/SW co-design

Search Result 23, Processing Time 0.025 seconds

FPGA based HW/SW co-design for vision based real-time position measurement of an UAV

  • Kim, Young Sik;Kim, Jeong Ho;Han, Dong In;Lee, Mi Hyun;Park, Ji Hoon;Lee, Dae Woo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.232-239
    • /
    • 2016
  • Recently, in order to increase the efficiency and mission success rate of UAVs (Unmanned Aerial Vehicles), the necessity for formation flights is increased. In general, GPS (Global Positioning System) is used to obtain the relative position of leader with respect to follower in formation flight. However, it can't be utilized in environment where GPS jamming may occur or communication is impossible. Therefore, in this study, monocular vision is used for measuring relative position. General PC-based vision processing systems has larger size than embedded systems and is hard to install on small vehicles. Thus FPGA-based processing board is used to make our system small and compact. The processing system is divided into two blocks, PL(Programmable Logic) and PS(Processing system). PL is consisted of many parallel logic arrays and it can handle large amount of data fast, and it is designed in hardware-wise. PS is consisted of conventional processing unit like ARM processor in hardware-wise and sequential processing algorithm is installed on it. Consequentially HW/SW co-designed FPGA system is used for processing input images and measuring a relative 3D position of the leader, and this system showed RMSE accuracy of 0.42 cm ~ 0.51 cm.

Design of STE SW Running on a Single PC to Verify Avionics OFP (항전 비행운용프로그램 검증을 위한 단일 PC 기반 소프트웨어 시험환경 SW 설계)

  • Cha, Sang-Cheol;Lee, Du-Hwan;Kim, Jeong-Yeol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.11
    • /
    • pp.969-973
    • /
    • 2018
  • Avionics OFP runs on the mission computer and can be operated by interacting with several avionics equipments. In order to verify OFP SW, SIL having real avionics equipments or models is absolutely necessary. Therefore in many cases SIL is implemented concurrently with OFP developing, and only one SIL is provided to developers. So developers sometimes need an alternative to SIL for verifying requirements in the middle of development process. In this paper, we propose a single PC based STE SW that simulates interworking equipments and verifies OFP in a single PC environment without actual interworking equipments or SIL HW interfaces.

The Development of Reusable SoC Platform based on OpenCores Soft Processor for HW/SW Codesign

  • Bin, Young-Hoon;Ryoo, Kwang-Ki
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.4
    • /
    • pp.376-382
    • /
    • 2008
  • Developing highly cost-efficient and reliable embedded systems demands hardware/software co-design and co-simulation due to fast TTM and verification issues. So, it is essential that Platform-Based SoC design methodology be used for enhanced reusability. This paper addresses a reusable SoC platform based on OpenCores soft processor with reconfigurable architectures for hardware/software codesign methodology. The platform includes a OpenRISC microprocessor, some basic peripherals and WISHBONE bus and it uses the set of development environment including compiler, assembler, and debugger. The platform is very flexible due to easy configuration through a system configuration file and is reliable because all designed SoC and IPs are verified in the various test environments. Also the platform is prototyped using the Xilinx Spartan3 FPGA development board and is implemented to a single chip using the Magnachip cell library based on $0.18{\mu}m$ 1-poly 6-metal technology.

Integration of SoC Test and Verification Using Embedded Processor and Reconfigurable Architecture (임베디드 프로세서와 재구성 가능한 구조를 이용한 SoC 테스트와 검증의 통합)

  • Kim Nam-Sub;Cho Won-Kyung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.7 s.349
    • /
    • pp.38-49
    • /
    • 2006
  • In this paper, a novel concept based on embedded processor and reconfigurable logic is proposed for efficient manufacturing test and design verification. Unlike traditional gap between design verification and manufacturing test, proposed concept is to combine both design verification and manufacturing test. The semiconductor chip which is using the proposed concept is named "SwToC" and SwToC stands for System with Test On a Chip. SwToC has two main features. First, it has functional verification function on a chip and this function could be made by using embedded processor, reconfigurable logic and memory. Second, it has internal ATE on a chip and this feature also could be made by the same architecture. To evaluate the proposed SwToC, we have implemented SwToC using commercial FPGA device with embedded processor. Experimental results showed that the proposed chip is possible for real application and could have faster verification time than traditional simulation method. Moreover, test could be done using low cost ATE.

MP3 Encoder Chip Design Based on HW/SW Co-Design (하드웨어 소프트웨어 Co-Design을 통한 MP3 부호화 칩 설계)

  • Park Jong-In;Park Ju Sung;Kim Tae-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.61-71
    • /
    • 2006
  • An MP3 encoder chip has been designed and fabricated with the hardware and software co-design concepts. In the aspect of the software. the calculation cycles of the distortion control loop. which requires most of the calculation cycles in MP3 encoding procedure. have been reduced to $67\%$ of the original algorithm through the 'scale factor Pre-calculation'. By using a floating Point 32 bit DSP core and designing the FFT block with the hardware. we can get the additional reduction of the calculation cycles in addition to the software optimization. The designed chip has been verified using HW emulation and fabricated via 0.25um CMOS technology The fabricated chip has the size of $6.2{\time}6.2mm^2$ and operates normally on the test board in the qualitative and quantitative aspect.

HW/SW Co-Design of an Adaptive Frequency Decision in the Bluetooth Wireless Network

  • Moon, Sang-Ook
    • Journal of information and communication convergence engineering
    • /
    • v.7 no.3
    • /
    • pp.399-403
    • /
    • 2009
  • In IEEE 802.15.1 (Bluetooth) Ad-hoc networks, the frequency is resolved by the specific part of the digits of the Device clock and the Bluetooth address of the Master device in a given piconet. The piconet performs a fast frequency hopping scheme over 79 carriers of 1-MHz bandwidth. Since there is no coordination between different piconets, packet collisions may occur if two piconets are located near one another. In this paper, we proposed a software/hardware co-design of an adaptive frequency decision mechanism so that more than two different kinds of wireless devices can stay connected without frequency collision. Suggested method was implemented with C program and HDL (Hardware Description Language) and automatically synthesized and laid out. The adaptive frequency hopping circuit was implemented in a prototype and showed its operation at 24MHz correctly.

HW/SW Co-design of a Visual Driver Drowsiness Detection System

  • Yu, Tian;Zhai, Yujia
    • Journal of Convergence Society for SMB
    • /
    • v.4 no.1
    • /
    • pp.31-39
    • /
    • 2014
  • PID auto-tuning controller was designed via fuzzy logic. Typical values such as error and error derivative feedback were changed as heuristic expressions, and they determine PID gain through fuzzy logic and defuzzification process. Fuzzy procedure and PID controller design were considered separately, and they are combined and analyzed. Obtained auto-tuning PID controller by Fuzzy Logic showed the ability for less than 3rd order plant control. We also applied to reference tracking problem with the designed auto-tuning scheme.

  • PDF

Design and Verification of Efficient On-Chip Debugger for Core-A (Core-A를 위한 효율적인 On-Chip Debugger 설계 및 검증)

  • Xu, Jingzhe;Park, Hyung-Bae;Jung, Seung-Pyo;Park, Ju-Sung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.4
    • /
    • pp.50-61
    • /
    • 2010
  • Nowadays, the SoC is watched by all over the world with interest. The design trend of the SoC is hardware and software co-design which includes the design of hardware structure in RTL level and the development of embedded software. Also the technology is toward deep-submicron and the observability of the SoC's internal state is not easy. Because of the above reasons, the SoC debug is very difficult and time-consuming. So we need a reliable debugger to find the bugs in the SoC and embedded software. In this paper, we developed a hardware debugger named OCD. It is based on IEEE 1140.1 JTAG standard. In order to verify the operation of OCD, it is integrated into the 32bit RISC processor - Core-A (Core-A is the unique embedded processor designed by Korea) and is tested by interconnecting with software debugger. When embedding the OCD in Core-A, there is 14.7% gate count overhead. We can modify the DCU which occupies 2% gate count in OCD to adapt with other processors as a debugger.

Multi-threaded system to support reconfigurable hardware accelerators on Zynq SoC (Zynq SoC에서 재구성 가능한 하드웨어 가속기를 지원하는 멀티쓰레딩 시스템 설계)

  • Shin, Hyeon-Jun;Lee, Joo-Heung
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.186-193
    • /
    • 2020
  • In this paper, we propose a multi-threading system to support reconfigurable hardware accelerators on Zynq SoC. We implement high-performance JPEG decoder with reconfigurable 2D IDCT hardware accelerators to achieve maximum performance available on the platform. In this system, up to four reconfigurable hardware accelerators synchronized with SW threads can be dynamically reconfigured to provide adaptive computing capabilities according to the given image resolution and the compression ratio. JPEG decoding is operated using images with resolutions 480p, 720p, 1080p at the compression ratio of 7:1-109:1. We show that significant performance improvements are achieved as the image resolution or the compression ratio increase. For 1080p resolution, the performance improvement is up to 79.11 times with throughput speed of 99 fps at the compression ratio 17:1.

Energy-efficient Reconfigurable FEC Processor for Multi-standard Wireless Communication Systems

  • Li, Meng;der Perre, Liesbet Van;van Thillo, Wim;Lee, Youngjoo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.3
    • /
    • pp.333-340
    • /
    • 2017
  • In this paper, we describe HW/SW co-optimizations for reconfigurable application specific instruction-set processors (ASIPs). Based on our previous very long instruction word (VLIW) ASIP, the proposed framework realizes various forward error-correction (FEC) algorithms for wireless communication systems. In order to enhance the energy efficiency, we newly introduce several design methodologies including high-radix algorithms, task-level out-of-order executions, and intensive resource allocations with loop-level rescheduling. The case study on the radix-4 turbo decoding shows that the proposed techniques improve the energy efficiency by 3.7 times compared to the previous architecture.