• 제목/요약/키워드: HVDC converter

검색결과 181건 처리시간 0.022초

Estimating Stability of MTDC Systems with Different Control Strategy

  • Nguyen, Thai-Thanh;Son, Ho-Ik;Kim, Hak-Man
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.443-451
    • /
    • 2015
  • The stability of a multi-terminal direct current (MTDC) system is often influenced by its control strategy. To improve the stability of the MTDC system, the control strategy of the MTDC system must be appropriately adopted. This paper deals with estimating stability of a MTDC system based on the line-commutated converter based high voltage direct current (LCC HVDC) system with an inverter with constant extinction angle (CEA) control or a rectifier with constant ignition angle (CIA) control. In order to evaluate effects of two control strategies on stability, a MTDC system is tested on two conditions: initialization and changing DC power transfer. In order to compare the stability effects of the MTDC system according to each control strategy, a mathematical MTDC model is analyzed in frequency domain and time domain. In addition, Bode stability criterion and transient response are carried out to estimate its stability.

An Improved Phase-Shifted Carrier PWM for Modular Multilevel Converters with Redundancy Sub-Modules

  • Choi, Jong-Yun;Han, Byung-Moon
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.473-479
    • /
    • 2016
  • In this paper, the PSC PWM method is chosen as the optimal modulation method for a 20MW VSC HVDC, with consideration of the harmonic distortion of the output voltage, the switching frequency, and the control implementation difficulty. In addition, a new PSC PWM method is proposed in order to achieve an easy application and to solve the redundant control problems encountered in the previous PSC PWM method. To verify the proposed PSC PWM method, PSCAD/EMTDC simulations for an 11-level MMC RTDS HILS test and an 11-level MMC prototype converter test were performed. As can be seen from the results of these tests, the proposed PSC PWM method shows good results in an 11-level MMC with redundant sub-modules.

An Application of Proportional-Resonant Controller in MMC-HVDC System under Unbalanced Voltage Conditions

  • Quach, Ngoc-Thinh;Ko, Ji-Han;Kim, Dong-Wan;Kim, Eel-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권5호
    • /
    • pp.1746-1752
    • /
    • 2014
  • This paper presents an application of proportional-resonant (PR) current controllers in modular multilevel converter-high voltage direct current (MMC-HVDC) system under unbalanced voltage conditions. The ac currents are transformed and controlled in the stationary reference frame (${\alpha}{\beta}$-frame). Thus, the complex analysis of the positive and negative sequence components in the synchronous rotating reference frame (dq-frame) is not necessary. With this control method, the ac currents are kept balanced and the dc-link voltage is constant under the unbalanced voltage fault conditions. The simulation results based on a detailed PSCAD/EMTDC model confirm the effectiveness of the proposed control method.

고정 샘플링 주파수에서의 모듈형 멀티레벨 컨버터 레벨 선택 알고리즘 (Level Selection Algorithm with Fixed Sampling Frequency for Modular Multilevel Converter)

  • 김찬기;박창환;김장목
    • 전력전자학회논문지
    • /
    • 제23권6호
    • /
    • pp.415-423
    • /
    • 2018
  • This study uses a level selection algorithm with fixed sampling frequency for modular multilevel converter (MMC) systems. Theoretically, the proposed method increases the level infinitely while the sampling time remains the same. The proposed method called cluster stream buffer (CSB) consists of several clusters, wherein each cluster is composed of 32 submodules that depend on the level of the submodules in the MMC system. To increase the level of the MMC system, additional clusters are used, and the sampling time between clusters is determined from the sampling time between levels needed for utilizing the entire level from the MMC system. This method is crucial in the control of MMC-type HVDC systems because it improves scalability and precision.

MVDC에 적합한 모듈형 멀티레벨 컨버터의 모듈레이션 방식에 대한 연구 (A Study on Modulation Methods for Modular Multilevel Converter in MVDC System)

  • 장유남;이현우;이선호;김이삭;박정욱
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2020년도 전력전자학술대회
    • /
    • pp.259-260
    • /
    • 2020
  • 모듈화 멀티레벨 컨버터 (modular multilevel converter, MMC)는 고압직류송전(high-voltage direct current, HVDC)에 대한 기술이 발전함에 따라서 이와 관련된 전력변환 장치로써 많은 연구되어지고 있다. 10kV 이하로 구현되는 중압직류송전(medium-volatge direct current, MVDC) 시스템 및 모터 드라이브에 이용되는 MMC의 경우에는 수백 개의 직렬 서브모듈로 구성된 MMC가 사용되는 HVDC와 다르기 때문에 여러 모듈레이션 방식에서의 다른 장단점을 가지게 된다. 본 논문에서는 전력전자 시뮬레이션 툴인 PSIM을 이용하여 여러가지 모듈레이션의 MVDC으로의 적용에 있어서의 장단점을 분석한다.

  • PDF

근사 계단 제어 변조로 동작하는 모듈형 멀티 레벨 컨버터를 위한 새로운 초기 충전 기법 (New Pre-charging Method for Modular Multi-level Converter Operated in Nearest Level Control Modulation)

  • 김교민;김재혁;김도현;한병문
    • 전기학회논문지
    • /
    • 제65권10호
    • /
    • pp.1655-1663
    • /
    • 2016
  • Recently the researches on Modular Multi-level Converter (MMC) are being highlighted because high quality and efficient power transmission are key issues in the High Voltage Direct Current (HVDC) transmission system. This paper proposes an improved pre-charging method for the sub-module capacitors in MMC that operates in Nearest Level Control (NLC) modulation. The proposed method does not require additional circuits or Pulse Width Modulation (PWM) techniques. The feasibility of proposed method was verified through computer simulations for a scaled 3-phase 10kVA MMC with 12 sub-modules per each arm. Hardware experiments with a scaled prototype were performed in the lab to confirm the simulation results.

Design of Emotional Learning Controllers for AC Voltage and Circulating Current of Wind-Farm-Side Modular Multilevel Converters

  • Li, Keli;Liao, Yong;Liu, Ren;Zhang, Jimiao
    • Journal of Power Electronics
    • /
    • 제16권6호
    • /
    • pp.2294-2305
    • /
    • 2016
  • The introduction of a high-voltage direct-current (HVDC) system based on a modular multilevel converter (MMC) for wind farm integration has stimulated studies on methods to control this type of converter. This research article focuses on the control of the AC voltage and circulating current for a wind-farm-side MMC (WFS-MMC). After theoretical analysis, emotional learning (EL) controllers are proposed for the controls. The EL controllers are derived from the learning mechanisms of the amygdala and orbitofrontal cortex which make the WFS-MMC insensitive to variance in system parameters, power change, and fault in the grid. The d-axis and q-axis currents are respectively considered for the d-axis and q-axis voltage controls to improve the performance of AC voltage control. The practicability of the proposed control is verified under various conditions with a point-to-point MMC-HVDC system. Simulation results show that the proposed method is superior to the traditional proportional-integral controller.

Design and Control Method for Sub-module DC Voltage Ripple of HVDC-MMC

  • Gwon, Jin-Su;Park, Jung-Woo;Kang, Dea-Wook;Kim, Sungshin
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권4호
    • /
    • pp.921-930
    • /
    • 2016
  • This paper proposes a design and control method for a high-voltage direction current modular multilevel converter (HVDC-MMC) considering the capacitor voltage ripple of the submodule (SM). The capacitor voltage ripple consists of the line frequency and double-line-frequency components. The double line- frequency component does not fluctuate according to the active power, whereas the line-frequency component is highly influenced by the grid-side voltage and current. If the grid voltage drops, a conventional converter increases the current to maintain the active power. A grid voltage drops, current increment, or both occur with a capacitor voltage ripple higher than the limit value. In order to reliably control an MMC within a limit value, the SM capacitor should be designed on the basis of the capacitor voltage ripple. In this paper, the capacitor voltage ripple according to the grid voltage and current are analyzed, and the proposed control method includes a current limitation method considering the capacitor voltage ripple. The proposed design and control method are verified through simulation using PSCAD/EMTDC.

고전압 입력용 SMPS의 고효율 전략 (High Efficiency Strategy of High Input Voltage SMPS)

  • 우동영;박성미;박성준
    • 한국산업융합학회 논문집
    • /
    • 제22권3호
    • /
    • pp.365-371
    • /
    • 2019
  • Recently, the demonstration and research on the power transmission using high voltage DC such as HVDC(High Voltage DC), Smart Grid, DC transmission and distribution have been actively conducted. In order to control the power converter in high-voltage DC power transmission system, SMPS(Switching Modulation Power Supply) for power converter control using high-voltage DC input is essential. However, the demand for high-pressure SMPS is still low, so the development is not enough. In the low-output SMPS using the high-voltage input, it is difficult to achieve high efficiency due to the switching transient loss especially at light load. In this paper, we propose a new switching scheme for high power SMPS control for low output power. The proposed method can provide better efficiency increase effect in the light load region compared to the existing PWM method. To verify the feasibility of the proposed method, a 40 W SMPS for HVDC MMC(Modulation Multi-level Converter) was designed and verified by simulation.

Power Loss Modeling of Individual IGBT and Advanced Voltage Balancing Scheme for MMC in VSC-HVDC System

  • Son, Gum Tae;Lee, Soo Hyoung;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권5호
    • /
    • pp.1471-1481
    • /
    • 2014
  • This paper presents the new power dissipation model of individual switching device in a high-level modular multilevel converter (MMC), which can be mostly used in voltage sourced converter (VSC) based high-voltage direct current (HVDC) system and flexible AC transmission system (FACTS). Also, the voltage balancing method based on sorting algorithm is newly proposed to advance the MMC functionalities by effectively adjusting switching variations of the sub-module (SM). The proposed power dissipation model does not fully calculate the average power dissipation for numerous switching devices in an arm module. Instead, it estimates the power dissipation of every switching element based on the inherent operational principle of SM in MMC. In other words, the power dissipation is computed in every single switching event by using the polynomial curve fitting model with minimum computational efforts and high accuracy, which are required to manage the large number of SMs. After estimating the value of power dissipation, the thermal condition of every switching element is considered in the case of external disturbance. Then, the arm modeling for high-level MMC and its control scheme is implemented with the electromagnetic transient simulation program. Finally, the case study for applying to the MMC based HVDC system is carried out to select the appropriate insulated-gate bipolar transistor (IGBT) module in a steady-state, as well as to estimate the proper thermal condition of every switching element in a transient state.